
2. Learning Processes

2.1 Introduction

• Central properties of a neural network:
- Learning from its environment.
- Improvement in performance through learning.

• In practice, some suitable learning algorithm must be used.

• This adjusts the synaptic weights (free parameters of the network)
according to some meaningful rules.

1



Organization of the Chapter 2

The chapter consists of three parts:

1. In Sections 2.2-2.6, five basic learning rules are discussed:

• error-correction learning;

• memory-based learning;

• Hebbian learning;

• competitive learning;

• Boltzmann learning.

2. Then various learning methodologies are studied:

• credit-assignment problem (Section 2.7);

• learning with a teacher (Section 2.8);

• learning without a teacher (Section 2.9);

3. Learning tasks, memory, and adaptation are studied in
Sections 2.10-2.12.

2



2.2 Error-Correcting Learning

• Consider the simple case of a single neuron k.

• This lies in the output layer of the multilayer feedforward network

• Neuron k is driven by a signal vector x(n) produced by the preceding
hidden layer(s).

• The argument n denotes discrete time, or actually the iteration number
in the learning algorithm.

3



• yk(n) denotes the output signal of neuron k.

• This is compared to the desired response or target output dk(n).

• Thus the error signal is defined by

ek(n) = dk(n) − yk(n)

• The error signal ek(n) is used to adjust the values of the synaptic
weights.

• The output signal yk(n) should approach the desired response dk(n)
in a step-by-step manner.

• This is achieved by minimizing a cost function or index of performance
defined in this case by

E(n) = 0.5[ek(n)]2

• E(n) is the instantaneous value of the error energy

4



• Learning is continued until the synaptic weights are essentially stabi-
lized.

• This type of learning process is called error-correction learning.

• Minimization of the cost function E(n) leads to the so-called delta
rule or Widrow-Hoff rule (1960):

∆wkj(n) = ηek(n)xj(n). (1)

• Here wkj(n) is the j-th element of the weight vector wk(n) of the
output neuron k.

• xj(n) is the corresponding j-th component of the signal vector x(n).

• ∆wkj(n) is the adjustment (update, correction) made to the weight
wkj(n) at iteration step n.

• The learning-rate parameter η is a positive constant which determines
the amount of correction.

• The error signal must be directly measurable.
5



• This means that we must know the desired response dk(n), or the
learning process is supervised.

• Widrow-Hoff learning rule is local.

• It uses information directly available to neuron k through its synaptic
connections.

• The new, updated value of the synaptic weight wkj(n) is computed
from the rule

wkj(n + 1) = wkj(n) + ∆wkj(n). (2)

• This formula could be represented also in the form

wkj(n) = z−1[wkj(n + 1)] (3)

where z−1 is the unit-delay operator (storage element) used widely in
digital signal processing.

6



• Signal-flow graph representation of the error-correction learning process.

• Actually this is a closed-loop feedback system

7



• The learning parameter η is crucial to the performance of
error-correction learning in practice.

• It affects to the:
- stability of the learning algorithm;
- convergence speed;
- final accuracy achieved.

• Error-correction learning is discussed in much greater detail in Chapters
3 and 4.

8



2.3 Memory-Based Learning

• In memory-based learning, all (or most) of past experiences are explicit-
ly stored in a large memory.

• This consists of correctly classified input-output examples
{(x1, d1), (x2, d2), . . . , (xN , dN)}.

• Again, xi denotes i-th input vector and di the corresponding desired
response.

• Without loss of generality, di can be restricted to be a scalar.

• Typically, di is the number of pattern class.

• Consider now classification of a test vector xtest not seen before.

• This is done by retrieving and analyzing the training data in a local
neighborhood of xtest.

• All memory-based learning algorithms involve two parts:

9



1. Criterion used for defining the local neighborhood of the test
vector xtest.

2. Learning rule applied to the training examples in the local neigh-
borhood of the test vector xtest.

• A simple yet effective memory-based learning algorithm is known as
the nearest-neighbor rule.

• The vector x′
N belonging to the set of training vectors {x1,x2, . . . ,xN}

is the nearest neigbor of xtest if

mini d(xi,xtest) = d(x′
N ,xtest)

where d(xi,xtest) is the Euclidean distance between the vectors xi and
xtest.

• xtest is classified into the same class as its nearest neigbor x′
N .

• Nearest neigbor rule is independent of the underlying distribution.

10



• Assume that:
- The training samples are independently and identically distributed;
- The sample size N is infinitely large.

• One can then show that the probability of error in nearest neighbor
classification is at most twice the Bayes probability of error (Cover and
Hart, 1967).

• The Bayes error is the smallest possible (optimal one).

• It is discussed in Chapter 3.

• Thus half the classification information in an infinitely large training
set is contained in the nearest neighbor.

11



K-nearest neighbor classifier

• xtest is classified to the class which is most frequently represented in
its k-nearest neighbors (a majority vote).

• The k-nearest neigbor classifier averages information, rejecting single
outliers.

• outlier = exceptional, often erroneous observation.

12



• k-nearest neighbor classifier (k = 3)

• Another important type of memory-based classifiers:
radial-basis function networks (Chapter 5).

13



2.4 Hebbian Learning

• Hebb’s postulate of learning (1949) is the oldest and most famous
neural learning rule

• A modern, expanded version of Hebb’s learning rule consists of two
parts:

1. If two neurons on either side of a synapse (connection) are acti-
vated simultaneously (synchronously), then the strength of that
synapse is selectively increased.

2. If two neurons on either side of a synapse are activated asynchro-
nously, then that synapse is selectively weakened or eliminated.

• Such a synapse is called a Hebbian synapse.

14



• Key properties of a Hebbian synapse:

1. Time-dependent mechanism
- Modification depends on the exact time of occurrence of presy-
naptic and postsynaptic signals.

2. Local mechanism
- A Hebbian synapse uses only local information available
for a neuron.

3. Interactive mechanism
- Change in a Hebbian synapse depends both on presynaptic and
postsynaptic signals.
- Interaction between these signals can be either
deterministic or statistical in nature.

4. Conjunctional or correlational mechanism
- Correlation over time between presynaptic and
postsynaptic signals is responsible for a synaptic change.

15



• Synaptic modifications can be classified as Hebbian, anti-Hebbian, and
non-Hebbian ones.

• A Hebbian synapse increases its strength for positively correlated pre-
synaptic and postsynaptic signals.

• It decreases the strength for uncorrelated and negatively correlated
signals.

• An anti-Hebbian synapse operates just in the reverse manner.

• A non-Hebbian synapse does not use Hebbian type learning.

xj yk

Other neurons

16



Mathematical Models of Hebbian Learning

• Consider a synaptic weight wkj of neuron k.

• The respective presynaptic (input) signal is denoted by xj.

• The postsynaptic (output) signal is denoted by yk.

• The change (update) of wkj at time step n has the general form

∆wkj(n) = F (yk(n), xj(n))

where F (y, x) is a function of both postsynaptic and presynaptic sig-
nals.

• Consider two specific forms of the general Hebbian learning rule.

17



1. Standard Hebbian learning rule:

∆wkj(n) = ηyk(n)xj(n)

- Here η is again the learning rate or parameter.

- Repeated application of the input (presynaptic) signal
xj leads to an increase in the output signal yk.

- Finally this leads to an exponential growth and
saturation of the weight value.

18



2. Covariance Hebbian rule:

∆wkj(n) = η[xj(n) −mx][yk(n) −my]

Here mx and my are time averages of the presynaptic input signal
xj and postsynaptic output signal yk, respectively.

Covariance rule can converge to a nontrivial state
xj = mx, yk = my (error in Haykin’s book here!?).

The synaptic strength can both increase and decrease.

19



Standard Hebbian rule and the covariance rule.

• In both cases, the weight update depends on the output signal yk

linearly.

• Hebbian learning has strong physiological evidence.

20



2.5 Competitive Learning

• In competitive learning, the neurons in the output layer compete to
become active (fired).

• Only a single output neuron is active at any one time.

• In Hebbian learning, several output neurons may be active simulta-
neously.

• Competitive learning is highly suitable for finding relevant features for
classification tasks.

21



• Three basic elements of a competitive learning rule:

1. A set of similar neurons except for some randomly distributed
synaptic weights.
- Therefore the neurons respond differently to input signals.

2. A limit imposed on the strength of each neuron.

3. A competing mechanism for the neurons.
- Only one output neuron has the right to respond to an input
signal.
- The winner of the competition is called a winner-takes-all neu-
ron.

• As a result of competition, the neurons become specialized.

• They respond to certain type of inputs, becoming feature detectors for
different input classes.

22



• Simplest form of a competitive neural network

23



• Feedback connections between the competing output neurons perform
lateral inhibition.

• Each neuron tends to inhibit the neuron to which it is laterally con-
nected.

• A neuron k is the winning neuron if its induced local field vk for a given
input pattern x is the largest one.

• Mathematically, the output signal

yk = 1, if vk > vj for all j, j 6= k.

For other than the winning neuron, the output signal yk = 0.

• The local field vk represents the combined action of all the forward
and feedback inputs to neuron k.

• Typically, all the synaptic weights wkj are positive.

24



• Normalization condition giving equal portion of synaptic weight “mass”
to each neuron: ∑

j

wkj = 1 for all k

• A neuron learns by shifting synaptic weights from its inactive input
nodes to the active ones.

• The standard competitive learning rule:

∆wkj = η(xj − wkj) if neuron k wins;

∆wkj = 0 if neuron k loses the competition.

• This learning rule moves the weight vector wk of the winning neuron
k toward the input pattern x.

25



• Here both the input vectors x and the weight vectors wk are scaled to
have unit length (Euclidean norm).

• Then they are points on the surface of an N -dimensional hypersphere
(assuming N -dimensional vectors).

• Initial state (Fig. a) shows three clusters of data points (black dots)
and initial values of three weight vectors (crosses).

26



• Figure b shows a typical final state of a network resulting from com-
petitive learning.

• The weight vectors have moved to the gravity centers of clusters.

• In more difficult cases, competitive learning algorithms may fail to find
stable clusters.

27



2.7 Credit-Assignment Problem

• Credit assignment (Minsky, 1961) is a useful concept in studying lear-
ning algorithms for distributed systems.

• Basic problem: Assign credit or blame to internal decisions made by a
learning machine.

• The reward or punishment is based on the quality of the overall output
provided by the learning machine.

• Often the outputs of a learning machine depend directly on some ac-
tions and only indirectly on the internal decisions.

28



• In these situations the credit-assignment problem may be decomposed
into two subproblems (Sutton, 1984):

1. Temporal credit-assignment problem
- The assignment of credits to actions for outcomes.
- Involves the instants of time when the actions that deserve credit
were actually taken.

2. Structural credit-assignment problem
- Credit assignment to the internal structures of the actions ge-
nerated by the system.

• The structural credit-assignment problem is relevant when we must
determine precisely which component of the system should alter its
behavior and how much for improving overall system performance.

• The temporal credit-assignment problem is relevant when we must de-
termine which of the actions were responsible for the outcomes obtai-
ned.

• Often both problems encounter simultaneously.

29



• The credit-assignment problem arises for example when error-correction
learning is applied to a multilayer feedforward neural network.

• Both the neurons in the hidden layers and in the output layer are
responsible for the overall behavior of the network.

• As an example, consider this

• It is straightforward to adjust the synaptic weights of the output neuron
using the known desired response and error-correction learning

• Fundamental question: how the weights of hidden neurons are adjus-
ted? — This will be discussed later on in Chapter 4.

30



2.8 Learning with a Teacher

• Called also supervised learning.

• A block diagram of a supervised learning system.

• Assumption: teacher has knowledge about the environment.

31



• This knowledge is represented by the known input-output pairs (trai-
ning data).

• The environment is unknown to the neural network.

• Using error-correction learning (for example), knowledge of the teacher
is transferred to the neural network.

• After learning, the neural network should be able to process new data
independently without a teacher.

• The learning system is a closed-loop feedback system.

• Typical error measure: mean-square error, as a function of the free
parameters of the system.

• This function can be described geometrically using a multidimensional
error surface.
- Coordinates: the free parameters to be optimized.

• The error surface is averaged over all possible input-output examples.

32



• Any supervised operation corresponds to a point on the error surface.

• The optimum operating point is the global minimum of the error sur-
face.

• In supervised learning, this global minimum is searched iteratively using
the gradient (derivative) of the error surface.

• The (negative) gradient vector shows the direction of steepest descent
at any point of the error surface.

• In practice, an instantaneous estimate of the gradient vector is often
used.

• Results in statistical fluctuations in learning.

• However, the correct minimum may be achieved using enough training
data and iterations.

• Gradient type learning may result in a local minimum.

33


	Learning Processes
	Introduction 
	Error-Correcting Learning 
	Memory-Based Learning 
	Hebbian Learning 
	Competitive Learning 
	Credit-Assignment Problem 
	Learning with a Teacher 


