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C =

∫

log

(

p(y|θ)p(θ)

q(θ)

)

q(θ)dθwith respet to the distribution q(θ). C an be written as

∫

log

(

p(y|θ)p(θ)

q(θ)

)

q(θ)dθ =

∫

log

(

p(θ|y)p(y)

q(θ)

)

q(θ)dθ

=

∫

log

(

p(θ|y)

q(θ)

)

q(θ)dθ +

∫

log p(y) q(θ)dθ

= −D(q(θ)||p(θ|y)) + log p(y)Instead of diretly minimizing the Kullbak-Leibler divergene D(q(θ)||p(θ|y)), in varia-tional learning one often maximizes C beause D(q(θ)||p(θ|y)) annot be omputed when

p(y) is unknown. But we see that maximizing C with respet to q(θ) results in minimizing

D(q(θ)||p(θ|y)), beause the term log p(y) does not depend on q(θ).ii) The data evidene p(y) is maximized when log p(y) is maximized. Write the log of evideneas

log p(y) = log

∫

p(y, θ)dθ

= log

∫

p(y|θ)p(θ)

q(θ)
q(θ)dθ

≥
∫

log

(

p(y|θ)p(θ)

q(θ)

)

q(θ)dθ

= CThe inequality is due to Jensen's inequality. So maximizing C maximizes a lower bound for
log p(y).Problem 2.The true posterior is p(θ|y) = a1p1(θ|y) + a2p2(θ|y) where pi is a Normal distribution
N(µi, σ

2
i ), i = 1, 2.In this problem we're going to minimise the KL-divergene between q and p. We argue thatsine the mixture omponents are well-separated, it is enough to onsider the ost funtionover eah of the mixture omponents separately as a good posterior approximation q to oneof the mixture omponents is almost zero at the other omponent,1

So assume q(θ) = N(θ|µ0, σ
2
0) and onsider one of pi(θ|y) = N(θ|µi, σ

2
i ) with oe�ient ai. Inthis ase we use the KL-divergene between q(θ) and the true posteriori omponent aipi(θ|y)diretly as pi is known. We minimise the ost funtion

C = D(q(θ)|aipi(θ|y)) =

∫

log

[

q(θ)

aipi(θ|y)

]

q(θ)dθ = D(q(θ)|pi(θ|y)) − log aiw.r.t. q(θ). Now the KL-divergene term attains its minimum value 0 i� q = pi. As theterm − log ai is onstant in terms of q, the whole ost funtion is minimised by q = pi =
N(θ|µi, σ

2
i ), i.e. µ0 = µi and σ2

0 = σ2
i .So far we have seen that �tting a Normal distribution N(µ0, σ

2
0) to another Normal distri-bution N(µ, σ2) gives the orret parameters.What about the mixture omponents? Comparing the �ts to eah mixture omponent, it islear that the one minimizing − log ai wins, and this is the one with larger ai, regardless ofthe mean and variane. Sine ai measures diretly the posterior mass ontained in the om-ponent distribution, it seems that well-separated Normal-like modes are handled orretlyby variational learning: regardless of variane and mean, the mode with the largest posteriormass is found.Problem 3.i) Laplae approximation �ts a Normal distribution to the posterior distribution. The ap-proximating distribution is entered at the posterior mode.First we need to �nd the posterior mode. This is the value λ0 that maximizes

p(λ|k) ∝ p(k|λ)p(λ).Sine p(λ|k) ∝ e−λλk−1, its derivative is

p′(λ|k) ∝ −e−λλk−1 + e−λλk−2(k − 1).Setting it to zero gives the mode λ0 = k − 1. This beomes the mean of the approximatingdistribution.Next we need the variane of the approximating distribution. The inverse of the variane σ2is alulated as σ−2 = [− log p(λ|k)]′′|λ=λ0

. First we need to alulate (log p)′′:

log p(λ|k) = −λ + (k − 1) log λ

(log p)′ = −1 + (k − 1)λ−1

(log p)′′ = −(k − 1)λ−2.Substituting the posterior mode λ0 = k − 1 gives

−(k − 1)(k − 1)−2 = −(k − 1)−1.This gives us σ2 = k − 1. This gives us the Laplae approximation N(λ|k − 1, k − 1).ii) Write l = log λ. Now we have

p(l|k) ∝ p(k|l) ∝ e−el

ekl2



beause the prior p(l) is onstant. The posterior mode is obtained by setting the derivativeequal to zero:

−ele−el

elk + e−el

kelk = 0

=⇒ ele−el

elk = e−el

kelk

=⇒ el = k

=⇒ l = log k.This gives us the mode l0 = log k.The logarithm of the posterior is

log p ∝ −el + lk,the �rst derivative is

(log p)′ ∝ −el + k,and the seond derivative is

(log p)′′ ∝ −el.Substituting the posterior mode l0 = log k, we obtain

(log p)′′|l=log k = −k.Now the variane is σ2 = k−1, and the Laplae approximation is N(l| log k, k−1).Comments: we an ompare the two approximations by omparing their means. The �rstgives λ = k−1 and the seond l = log λ = log k =⇒ λ = k. This example demonstrates thatthe parameterization matters when omputing Laplae (and most other) approximations.Problem 4.i) Minimize KL divergene

D(p‖q) =

∫

p log(p/q)dθSine ∫

p log p dθ is onstant with respet to θ0, one has to maximize

∫

p log q dθ (∗)Sine

q(θ) = N(θ|θ0, σ
2) =

1√
2πσ2

exp(− 1

2σ2
(θ − θ0)

2),its logarithm is

− 1

2σ2
(θ − θ0)

2where onstant terms are ignored. Then the maximization of (∗) is equivalent to minimizationof

∫

p(θ − θ0)
2dθ = E((θ − θ0)

2)So the solution is to hoose θ0 as the minimum mean-square estimate of θ.3

ii) Minimize

D(q‖p) =

∫

q log(q/p)dθSine ∫

q log q dθ = Eq(log q) ∝ Eq((θ−θ0)
2)/σ2 = 1 is onstant with respet to θ0, it remainsto maximize

∫

q log p dθ. (∗∗)Taylor-expand log p(θ|y) at θ0, whih gives
log p(θ|y) = log p(θ0|y) + (θ − θ0)(log p)′θ=θ0

+
1

2
(θ − θ0)

2(log p)′′θ=θ0
+ higher termsThe integral (∗∗) is an expetation E(log p) over the Normal distribution N(θ|θ0, σ

2). Ap-proximate by dropping the higher terms, whih gives
∫

q log p dθ = log p(θ0|y) +
1

2
σ2(log p)′′The value θ0 is hosen to maximize this expression. Note that when p itself is Normal, then

(log p)′′ is onstant w.r.t. θ0 and the solution is to maximize p(θ0|y). Other distributions anhave non-onstant (log p)′′ so the posterior mode is not always optimal θ0.
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