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gI) to do rejetion sampling on the posterior.First, let us look at the varianes of p(θ|y) and g(θ). There must be a known onstant Mfor whih
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g ; the variane of thesampling distribution must be larger than the posterior variane. We hoose σg = (1+ ǫ)σwhere ǫ > 0.Now M ≥ p(θ|y)
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should hold for all θ. Espeially when θ = 0, the exp(. . .) term is largest(now that we have hosen σ2
g > σ2), namely then exp(. . .) = 1. In this ase
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) = exp(N log(1 + ǫ)) ≈ exp(Nǫ) when ǫ is smallFor example, if N = 1000 and ǫ = 0.1 we obtain M ≈ 2.5 · 1041. A sample θ is aeptedwith probability p(θ|y)
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, so in this ase about one in 1041 samples will be aepted. Wesee that rejetion sampling is di�ult espeially in high dimensions. On the other hand,rejetion sampling is the only simple method for obtaining samples diretly from p(θ|y).Problem 2.Sine we assume that there is a unique stationary distribution for the Markov hain, itis enough to show that the posterior p(θ|y) is stationary. Assume that θn is from theposterior distribution. Choose any values θ1 and θ2 suh that

p(θ1|y) ≥ p(θ2|y). (1)First we ompute the probability that the simulation is at θ2 at time n and at θ1 at time
n + 1. This is
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The �rst probability is the transition probability from θ2 to θ1: this is J(θ1|θ2)pr. Theseond probability is by assumption p(θ2|y). Sine r is at least one by (1) and thus pr = 1,the transition probability will be

P21 = p(θ2|y)J(θ1|θ2).The probability

P12 = p(θn = θ1, θ
n+1 = θ2|y)an be obtained as above, but now r is at most one (and thus pr = r):

P12 = p(θ1|y)J(θ2|θ1)r.Substituting r = p(θ2|y)/p(θ1|y) we obtain
P12 = p(θ2|y)J(θ2|θ1).Sine J is symmetri, we get P12 = P21. This means that the distribution p(θn, θn+1|y) issymmetri w.r.t. θn and θn+1. We know that p(θn|y) = p(θ|y). Then
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= p(θn|y) = p(θ|y).This means that if the simulation has the posterior distribution at time n, then it willhave it at time n + 1, showing that it is stationary.If the posterior has two or more separate areas as in the problem statement (p1 and p2),then it is possible that there is more than one stationary distribution for the Markovhain. For example, if the jumping distribution prevents jumps of distane 1 or more,it is impossible to jump from p1 to p2, and vie versa. This is avoided if the jumpingdistribution an jump to any point with positive probability. Normal distribution is onesuh jumping distribution.Comments: With quite general assumptions, mainly that the simulation has a positiveprobability of reahing any point θ, one an show that the simulation atually onvergesto the stationary distribution. In pratie, by hoosing a suitable jumping distributionthe assumptions are ful�lled.Problem 3.i) First ompute p(µ|σ, y). This is again the posterior for inferring the mean of a Normaldistribution when the variane is known. The results obtained earlier give
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The distribution p(σ2|µ, y) is the posterior for inferring the unknown Normal varianewhen the mean µ is known. Sine the prior p(σ2) is Inverse-Gamma, then the posterior is
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µiThis holds in general, meaning that marginalization is trivial when using simulated pos-teriors θ1, . . . , θN : just ignore the omponents of θi you are not interested in.Problem 4.i) The posterior is zero when any yi is less than a. Therefore as one of the two salarfuntions determining the posterior we must use is y∗ = min yi. This gives the posterioras
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so the seond salar funtion is ∑

i yi. In statistis, y∗ and ∑

i yi are alled su�ientstatistis beause they summarise all the information data ontains about the unknownquantities.ii) First we ompute p(b|a, y). Using Bayes' Theorem we get
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p(a|b, y) ∝ p(y|a, b)p(a|b) = p(y|a, b)p(a, b)/p(b).Suppose this was di�ult to simulate. We an use the fat that we don't have to diretlysimulate a: we ould as well simulate a funtion of a and b, provided that we an solve afrom it. Write z = exp(abn). Then
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∣ Sine a = (bn)−1 log z, we get da/dz = (bnz)−1. Also, p(a) ∝ 1 so we get

p(z|b) = p(z) ∝ z−1Then
p(z|b, y) ∝ bn exp(−b
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yi)whih is independent of z and a. Therefore z has a uniform distribution. It remains to�nd the interval where this distribution is uniform. First, sine a > 0, it follows that

z > 1. The likelihood is zero when a > y∗ so it must hold that z = exp(abn) ≤ exp(y∗bn).Therefore p(z|b, y) = U(1, exp(y∗bn)).Now the Gibbs Sampler is ready:1. Choose initial values a0 and b0.2. Simulate b1 from the Gamma distribution using a03. Simulate z1 = exp(a1b1n) from the uniform distribution using b1.4. Solve a1 by (b1n)−1 log z1.5. Iterate by going bak to 2.
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