
T-61.5040 Oppivat mallit ja menetelmätT-61.5040 Learning Models and MethodsPajunen, ViitaniemiSolutions to exerise 7, 2.3.2007Problem 1. i) Aording to the problem statement, the oins are independent. Theproblem statement must be interpreted in suh way that this is the ase. The independenean be ahieved by regarding a and b as known onstants (for unknown a and b thiswould not be the ase). The following probabilities (in subproblem i) ) inlude impliitlyonditioning on these values.The likelihood is a Binomial distribution, so

p(y|θi) = Bin(y|n, θi)The posterior is

p(θi|yi) ∝ Bin(yi|n, θi)Beta(θi|a, b) ∝ θyi

i (1 − θi)
n−yiθa−1

i (1 − θi)
b−1The posterior is therefore Beta(θi|a + yi, b + n − yi)ii) Now the likelihood is Bin(y = y1 + y2|2n, θ) and the prior is Beta(θ|a, b). The samealulation as above gives

p(θ|y1, y2) = Beta(θ|a + y1 + y2, b + 2n − y1 − y2)iii) p(θ1, θ2, a, b|y1, y2) = p(θ1, θ2|a, b, y1, y2)p(a, b|y1, y2)The �rst term is simply the produt of two posteriors from part i), so

p(θ1, θ2|a, b, y1, y2) = p(θ1|y1, a, b)p(θ2|y2, a, b) = Beta(θi|a+y1, b+n−y1)Beta(θ2|a+y2, b+n−y2).The term p(a, b|y1, y2) is more di�ult. To ompute it, use the produt rule to obtain
p(θ1, θ2, a, b|y1, y2) = p(θ1, θ2|a, b, y1, y2)p(a, b|y1, y2)

=⇒ p(a, b|y1, y2) = p(θ1, θ2, a, b|y1, y2)/p(θ1, θ2|a, b, y1, y2)Here the term p(θ1, θ2|a, b, y1, y2) was just omputed above (Beta times Beta). The term
p(θ1, θ2, a, b|y1, y2) an be omputed as

p(θ1, θ2, a, b|y1, y2) ∝ p(y1|θ1, a, b)p(y2|θ2, a, b)p(θ1, θ2|a, b)p(a, b)

= Bin(y1|n, θ1)Bin(y2|n, θ2)Beta(θ1|a, b)Beta(θ2|a, b)Exp(a|1)Exp(b|1)and thus p(a, b|y1, y2) an be omputed: The denominator has the produt of Beta distri-butions and the numerator has the produt of Binomial and Beta distributions. The θiterms anel out. Also the Binomial onstants (n
yi

) an be dropped. The resulting distri-bution is

p(a, b|y1, y2) ∝ Exp(a|1)Exp(b|1)
[Γ(a + b)]2Γ(a + y1)Γ(b + n − y1)Γ(a + y2)Γ(b + n − y2)

[Γ(a)Γ(b)Γ(a + b + n)]21

This problem demonstrates how to do Bayesian Inferene on hierarhial data. In parti) the problem splits into two subproblems, beause the prior parameters a, b are knownand observing y1 = 12 gives no information about θ2. But in part iii) observing y1 = 12gives information about the values a and b, whih then a�et θ2.Problem 2.i) The model is p(y|µ, σ2) = N(y|µ, σ2). In last week's exerises we showed that theJe�rey's prior for the mean of a Normal distribution is onstant, and for the variane itis p(σ2) ∝ σ−2. Thus the produt of Je�rey's priors is now p(µ, σ2) ∝ σ−2. The Bayes'theorem gives

p(µ, σ2|y) ∝ p(y|µ, σ2)p(µ, σ2) ∝ σ−1 exp

(

− 1

2σ2
(y − µ)2

)

σ−2 = σ−3 exp

(

− 1

2σ2
(y − µ)2

)

.ii) The onditional posterior p(µ|σ2, y) answers the question "What is the mean µ, whendata y is observed and the variane σ2 is known?". This was answered last week for thease of normal data model with known variane and a normal prior for the mean. Now wean regard the onstant prior of µ as an in�nitely �at normal distribution. The posterioris then a normal distribution with mean given by a weighted average of prior mean anddata. The weights are the prior preision and the data preision σ−2. The uniform priorhas zero preision and thus the posterior mean is y. The posterior preision is the sum ofprior and data preisions. Again, prior preision is zero so the posterior variane is σ2. So

p(µ|σ2, y) = N(µ|y, σ2).iii) Write the integral expliitly as
p(σ2|y) =

∫

p(µ, σ2|y)dµ

∝
∫

σ−3 exp

(

− 1

2σ2
(y − µ)2

)

dµ

= σ−3
√

2πσ2

∫

1√
2πσ2

exp

(

− 1

2σ2
(y − µ)2

)

dµ

= σ−2
√

2π ∝ σ−2and thus the posterior of σ2 is of the same form as the prior.iv)

p(µ|y) ∝
∫

∞

0

σ−3 exp

(

− 1

2σ2
(y − µ)2

)

dσ2Substitute z = (y−µ)2

2σ2 = Aσ−2. Then the integration limits are swithed, and

dz = −Aσ−4dσ2 ⇒ −A−1σ4dz = dσ2.2



Also z−1/2 = A−1/2σ Then the integral is

p(µ|y) ∝
∫

∞

0

σ−3 exp(−z)A−1σ4dz

=

∫

∞

0

A−1σ exp(−z)dz

= A−1/2

∫

z−1/2 exp(−z)dz

= A−1/2Γ(1/2)The Gamma integral is onstant with respet to µ, so the posterior is

p(µ|y) ∝ A−1/2 =

[

(y − µ)2

2

]

−1/2

∝ 1

|y − µ|Problem 3.i) We are estimating the unknown mean θi of a Normal distribution with a known variane

σ2. The prior for θi is N(µ, τ 2) whih is known. The result was obtained before (Exerises6, Problem 1) and is

p(θ1|µ, σ, τ, D) = N

(

θ1

∣

∣

∣

∣

µ/τ 2 + (
∑

xi)/σ
2

1/τ 2 + n/σ2
, (1/τ 2 + n/σ2)−1

)Similarly for θ2 (in whih ase the number of observations is m).ii) Now we are estimating the unknown mean of N(µ, τ 2) when τ is known. The "data"arethe known values θ1, θ2. Sine µ has zero prior preision (in�nite variane), the result is

p(µ|θ1, θ2, σ, τ, D) = N
(

µ|(θ1 + θ2)/2, τ 2/2
)iii) This time the variane σ2 is unknown, but the mean is known for eah observation.The prior is p(σ2) ∝ σ−2. This an be written as p(σ2) = IG(σ2|0, 0). Then use the hintgiven in the problem to ompute

p(σ2|θ1, θ2, µ, τ, D) = IG
(

σ2|(n + m)/2, (n + m)v/2
)where

v =
1

n + m

(

∑

i

(xi − θ1)
2 +

∑

j

(yj − θ2)
2

)

iv) Again, τ 2 is the unknown variane and µ is the known mean of a Normal distribution.The "data"is θ1, θ2, both known. The prior for τ 2 is p(τ 2) ∝ (τ 2)−1/2. Non-rigorously thisis p(τ 2) = IG(τ 2| − 1/2, 0). Then the posterior is
p(τ 2|θ1, θ2, µ, σ, D) = IG

(

τ 2

∣

∣

∣

∣

1/2,
1

2
[(θ1 − µ)2 + (θ2 − µ)2]

)
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Problem 4.The posterior

p(θ|y) =

∫

p(θ, σ2
1, . . . , σ

2
n|y)dσ2

1 . . . dσ2
nrequires the joint posterior p(θ, σ2

1 , . . . , σ
2
n|y). It is

p(θ, σ2
1, . . . , σ

2
n|y) ∝

∏

i

p(yi|θ, σ2
i )p(σ2

i ) =
∏

i

N(yi|θ, σ2
i )p(σ2

i ) =
∏

i

Gi.The term Gi is

Gi ∝ σ−8
i exp

(

−1/2σ−2
i (yi − θ)2

)

exp(−2σ−2
i ).Eah Gi ontains just the parameters σ2

i and θ, so to integrate out the varianes, we ando it term by term:
Ji =

∫

Gidσ2
i ∝

∫

∞

0

σ−8
i exp

(

−σ−2
i (

1

2
(yi − θ)2 + 2)

)

dσ2
iLet us hange variables by setting z = σ−2

i

[

1
2
(yi − θ)2 + 2

]. For the di�erentials then

dz/dσ2
i = −σ−4

i

[

1

2
(yi − θ)2 + 2

]and the integration limits will hange, too. Substituting these into the integral we get

Ji =

∫ 0

∞

− exp(−z)σ−4
i []−1dz =

∫

∞

0

exp(−z)σ−2
i []−2zdz =

∫

∞

0

exp(−z)[]−3z2dz,where we have used the shorthand [] =
[

1
2
(yi − θ)2 + 2

]. The term [] does not depend on

σ2
i , so it an be taken out of the integral. The rest is a Gamma integral ∫∞

0
z2 exp(−z)dz,whih equals Γ(3) = 2!, independent of θ. The posterior of θ is then

p(θ|y) ∝
∏

i

[

1

2
(yi − θ)2 + 2

]

−3

.Given the data and θ = 0, the posterior value is 2−1510−3 ≈ 3 · 10−8, and for θ = 1 it is

[5/2]−15[13/2]−3 ≈ 4 · 10−9. Therefore θ = 0 has a higher posterior value.For omparison, we also determine whether θ = 0 or θ = 1 results in larger value oflikelihood p(y|θ, σ2) if the variane σ2 is onstant for all observations (σ2
i = σ2). Thelikelihood is a normal distribution and by the symmetry of the distribution around itsmean we an �nd the maximum likelihood estimate and see whether it is loser to θ = 0or θ = 1. The likelihood is

∏

i

p(yi|θ, σ2) ∝
∏

i

exp

(

−1

2
(yi − θ)σ−2

)

= exp

(

−1

2

∑

i

(yi − θ)2σ−2

)4



whose maximum is found at

∂

∂θ

[

−1

2
σ−2

∑

i

(yi − θ)2

]

= 0 ⇒ θ =
1

n

∑

i

yiwhih equals the mean 4/6 of the observations. This is loser to θ = 1, so the likelihood(or posterior probability with onstant prior) is higher for θ = 1.Comments: this is an example of a multivariate model whih an be solved and margina-lized in losed form. It also illustrates the �exibility of Bayesian inferene: we ould easilyallow the variane to depend on the sample yi. With a suitable prior for σ2
i , the result isa posterior whih has some robustness against outliers. This means that the single value

y = 4 did not make the more probable θ equal one, as opposed to the standard modelwith �xed variane.
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