
T-61.5040 Oppivat mallit ja menetelmätT-61.5040 Learning Models and MethodsPajunen, ViitaniemiSolutions to exerise 5, 16.2.2007Problem 1.i) Consider a set of n = v observations Zv. Then, by de�nition, the �rst of the formulasde�ning v hold, G(v) = v log 2 = log 2v, i.e. max N(Zv) = 2v. That is, every possibledihotomy an be obtained using the given set of funtions.We an pik a subset of size n from the above set of observations Zv, and again all possibledihotomies an be obtained for this set of observations. Thus G(n) = n log 2 when n ≤ v.In other words, linearity must hold for all n in [1, v], there annot be n for whih thelinearity does not hold. We an rewrite the de�nition of G(n):

G(n) =

{

= n log 2, n ≤ v

≤ v(log(n

v
) + 1), n > v
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+ 1) where v = 10, 50, 100 (from left toright).

ii)

lim
n→∞

G(n)

n
≤ lim

n→∞

v(log(n

v
) + 1)

n

= lim
n→∞

v

n
(log n − log v + 1)

= lim
n→∞

v log(n)

n
−

v log v

n
+

v

n

= lim
n→∞

v log(n)

nNow use L'Hospital's rule: di�erentiate numerator and denominator separately with re-spet to n. We get

lim
n→∞

v log(n)

n
= lim

n→∞

v

n
= 0and thus

lim
n→∞

G(n)

n
= 0.

Problem 2.i) There are 2n−1 di�erent vetors and 2n−1 − m are outside the training set. Sine wedon't know the last bits for the o�-training set vetors, the expeted ontribution to theaverage error is 1/2
[

2n−1
−m

2n−1

]. Sine the training error is s, its ontribution to the averageerror is ms/2n−1. So the average error is their sum

c = [2n−2 + (s − 1/2)m]/2n−1.If m is small and/or s is lose to 1/2, the average error is lose to 1/2. The only reasonthat the average error is not 1/2 is that the average error onsiders also the training set.If training data is well lassi�ed (s < 1/2), then the average error is also slightly less than

1/2. O�-training set error is always 1/2.Comments: note that this result seems to ontradit SLT bounds. But onsidering thesituation arefully, we note that we are not averaging over all possible training sets ofsize m. We have a given training set and onditional to that training set, the funtion

h annot generalize outside the training set. This is not surprising when onsidering theNo Free Lunh theorems. O�-training set error is independent of the training error if weaverage uniformly over all problems.ii) Denote by N the number of binary vetors inorretly lassi�ed by h. Then c = N/2n−1.The training error s is the number of suh vetors piked in the training set, divided by

m.The inequality |c − s| ≤ ǫ is equivalent to |c − z/m| ≤ ǫ where z = sm.We are going to use the Hoe�ding inequality:



If x1, . . . , xn are iid random variables for whih xi − E(xi) ∈ [ai, bi] and X =
∑

i
xi, then

p(X − E(X) ≥ ǫ) ≤ exp(−2ǫ2/
∑

i

(bi − ai)
2).Write c−s =

∑m

i=1
(c−zi)/m where zi denotes the lassi�ation error at point xi. Then ziis Bernoulli distributed with parameter c. Now look at p(c− s ≥ ǫ). Hoe�ding inequalityapplies for (c− s) with E(c− s) =

∑

E(c− zi)/m = 0. As (c− zi)/m ∈ [(c− 1)/m, c/m],

(bi − ai)
2 = 1/m2 and we get

p(c − s ≥ ǫ) ≤ exp(−2mǫ2).Changing signs we get

p(c − s ≤ −ǫ) ≤ exp(−2mǫ2),so

p(|c − s| ≥ ǫ) ≤ 2 exp(−2mǫ2)Comments: this result expliitly shows what the SLT bound means. It examines thedistribution of training errors s around their mean c. There is a binomial distributionbehind this: randomly piking training points result in random errors and the sum oferrors is tightly lustered around c. That is why it is unlikely that c and s are very farfrom eah other, taken over all training sets.Problem 3.i) A reasonable prior would be suh that nc has a binomial distribution Bin(n, 1/2). Ifwe hoose h independent of the problem, eah predition it makes is equally likely to beor right or wrong. We furthermore assume that the predition errors are independent,whih leads to a binomial distribution.ii) Probability of winning at least seven times is p(c ≤ 0.3). For a onstant prior this is
4/11. The expeted winnings are then 4/11 ∗ 10000 − 2500 ≈ 1136 > 0. Relying on aonstant prior, you should take the deal.The asino manager does not use a onstant prior sine he is still in business. He assumesthat eah outome is independent of the others, and red/blak are equally probable. Then
p(c ≤ 0.3) = p(c = 0)+p(c = 0.1)+p(c = 0.2)+p(c = 0.3) = 2−10(1+10+90/2+720/6) =
176/1024 ≈ 0.17.The expeted winnings for the asino are E(−C) = 2500 − 10000 ∗ 0.17 = 300

Problem 4.We onsider the onditional density p(c|s, h, m). We will ompare the values of this for
c = 0.1 and c = 0.5. Use Bayes' Theorem to write

p(c|s, h, m) ∝ p(s|c, h, m)p(c|h, m).On the right-hand side, the likelihood p(s|c, h, m) is obtained by onsidering m randompoints when the average error is c. The produt sm has a binomial distribution Bin(m, c).The new probability p(c|h, m) is literally �what do we know about c when all we assumeis h and m?� c is determined by the true funtion f , whih we don't know, and is nota�eted by m. All we an assume is that our funtion h guesses orretly as often as not.We also assume that the guessing errors are independent. Therefore nc has a binomialdistribution Bin(n, 1/2).Suppose s = 0.1, n = 1000, and m = 100. What is the posterior when c = 0.1 = sand c = 0.5? These points are seleted sine they maximize the �rst and the seondprobability in the posterior orrespondingly. The �rst probability p(s|c, h, m) is

(

m

sm

)

csm(1 − c)m−sm (1)and the seond probability p(c|h, m) is
(

n

cn

)

2−n. (2)Setting c = 0.1 = s, (1) gives (

100

10

)

(0.1)10(0.9)90 and (2) gives (

1000

100

)

2−1000.When c = 0.5, (1) gives (

100

10

)

2−100 and (2) gives (

1000

500

)

2−1000.Compute the ratio p(c = 0.1|s, h, m)/p(c = 0.5|s, h, m) to obtain

(0.1)10(0.9)902100

∏

500

i=101
i

∏

900

j=501
j
.The dominating term is the last ratio of produts whih is very small. Numerially, thewhole ratio is about 2 ∗ 10−144. This shows that the posterior probability is signi�antlyhigher at c = 0.5.Comments: Despite SLT bounds, we an't onlude that small s implies small c unlesswe are willing to make strong assumptions about the true model f (and therefore about

p(c|h)).


