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E{y|x} =

∫

yp(y|x) dyUse

p(y|x) =
p(x, y)

p(x)
=

p(x, y)
∫

p(x, y) dyto get the regression funtion

E{y|x} =

∫

yp(x, y)dy
∫

p(x, y)dy
.ii) Plae 1/N-th of the probability mass at eah observation, that is, K(x − xi, y − yi)/Nat (xi, yi). Then the joint density of the observations is

p(x, y) = 1/N
∑

i

K(x − xi, y − yi)whih is indeed a density funtion beause it integrates to 1 and it is nonnegative.iii) Now insert the formula of p(x, y) into the regression funtion E{y|x} obtained in parti):

E{y|x} =

∫

yp(x, y)dy
∫

p(x, y)dy

=

∫

y
∑

i K(x − xi, y − yi)dy
∫

∑

i K(x − xi, y − yi)dy

=

∑
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(

Kx(x − xi)
∫

yKy(y − yi)dy
)

∑

i

(

Kx(x − xi)
∫

Ky(y − yi)dy
)

=

∑

i Kx(x − xi)yi
∑

i Kx(x − xi)In the last equation we used the fat that Ky(y − yi) is the density funtion of the Gaus-sian distribution N(yi, 1), and formula ∫

yKy(y − yi)dy gives the expetation yi of thisdistribution.Note that using the regression funtion E{y|x} as an estimate for the value of y given x isa justi�ed hoie if the least mean squared error is onsidered.1

Problem 2.i) The lassi�ers are de�ned by seleting the index i ∈ {1, 2, . . . , n−1} and deiding whether
xi is in lass 0 or 1. This gives a total of 2n − 2 di�erent �nie� lassi�ers.ii) The assumptions made above mean that the fration of �nie� lassi�ation problems is
(2n − 2)/2n. In Problem 5 / Exerise 1, we omputed an upper bound for the fration ofproblems where the performane of any two methods di�er more than ǫ. Here we use thegiven upper bound 2e−ǫ2(n/2) (*).Consider A=guessing and B=potentially very good lassi�er. Suppose you want to laimthat B is muh better than A, meaning that ǫ is large. Then you use (*) to see how smallthe fration of problems must be for this to be true. Inreasing ǫ, the upper bound getssmaller. At some ǫ, the upper bound is equal to (2n − 2)/2n. If this ǫ is small, you anonlude that in the set of �nie� problems, B is not muh better than guessing. If ǫ islarge, then you an onlude that B may be muh better than guessing. Compute the ǫwhere the upper bound equals (2n − 2)/2n:

2n − 2

2n
= 2e−ǫ2(n/2)

ǫ =

√

2

n
log(

2n

n − 1
)This ǫ is typially larger than 1, as seen in the �gure. Therefore the set of �nie� problemsis small enough that (*) annot limit the performane of B.
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Comments: The assumption made above (the problem is �nie�) is often reasonable inlassi�ation problems. However, for regression problems it would seem to be quite strong.Yet both regression and lassi�ation are exatly the same problems: there are inputs x andorresponding outputs y. In lassi�ation, loose assumptions suh as made above seem toimply muh more on the possibility of having useful learning methods.Note that all this requires that all errors are equally bad: in regression one often preferssmall errors to large errors, but in lassi�ation all errors are often equal. We avoided thesequestions by hoosing the outputs to be binary.2



Problem 3.i) There are two points and therefore the line an be exatly �tted. The equations are

y1 = µ̂ + β̂, y0 = β̂ =⇒ β̂ = y0 and µ̂ = y1 − y0The predition at x = 2 is ŷ2 = 2µ̂ + β̂ = 2y1 − y0. The distribution of the predited valueis Normal. The mean value is 2E[y1]−E[y0] = 2µ+ β, and the variane is V ar(2y1 − y0) =
4V ar(y1)+V ar(y0) = 5 (here we have taken the noise term n to be generated independentlyfor eah observation). So ŷ2 ∼ N(2µ + β, 5). Sine the true value at x = 2 is 2µ + β, themean-square error is 5.ii) The onstant minimizing the mean-square error is the average y0/2+y1/2. This is at thesame time the predition at all inputs x. It is Normally distributed with mean 1/2E[y0] +
1/2E[y1] = 1/2β + 1/2(µ+ β) = 1/2µ+ β and variane is 1/4V ar(y0) + 1/4V ar(y1) = 1/2.Therefore the predition ŷ2 has a distribution N(1/2µ + β, 1/2). The mean squared erroris E([ŷ2 − 2µ − β]2) = E[z2] where we denote z = ŷ2 − 2µ − β. z has normal distribution

N(−3/2µ, 1/2) and therefore it is easy to alulateE[z2] = V ar(z)+E[z]2 = 1/2+(−3/2µ)2.If this mean-square error is less than 5, then it may make sense to use a onstant regressionfuntion even if you know that the true model is linear. If µ = 1, then the MSE for theonstant model is 11/4 < 5. Over�tting an happen when there is not enough data.Problem 4.i)
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∫ 1−x

0

(
∫ 1

b1+x

1da1

)

db1

= 1 − 2

∫ 1−x

0

(1 − b1 − x)db1

= 1 − 2|1−x
0

(

b1 −
1

2
b2
1 − xb1

)

= 1 − 2

(

1 − x −
1

2
(1 − x)2 − x(1 − x)

)

= 1 − 2

(

1

2
x2 − x +

1

2

)

= 1 − x2 + 2x − 1

= x(2 − x).ii) z is the maximum of variables |ai − bi|. Therefore
P (z ≤ x) =

d
∏

i=1

P (|ai − bi| ≤ x) = xd(2 − x)d.3

iii) As a minimum of n − 1 variables zj , we have

P (w ≤ x) = 1 −
n

∏

j=2

(1 − P (zj ≤ x))

= 1 − (1 − xd(2 − x)d)n−1

E(w) =

∫ 1

0

1 − P (w ≤ x)dx =

∫ 1

0

(

1 − xd(2 − x)d
)n−1

dx.iv)

E(w) =

∫ 1

0

(1 − 2x + x2)n−1dx

=

∫ 1

0

(x − 1)2n−2dx

=

∫ 0

−1

x2n−2dx

=
1
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.v) We are evaluating the integral

E(w) =

∫ 1

0

(

1 − xd(2 − x)d
)n−1

dx.Monotone onvergene lemma says that limd→∞

∫

fd(x)dx =
∫

limd→∞
fd(x)dx when fd(x) ≥

0 and fd+1(x) ≥ fd(x) for all d and x ∈ [0, 1] and limd→∞
fd(x) exists. We take the integrand

(1 − xd(2 − x)d)n−1 to be our funtion f . Sine 0 ≤ x(2 − x) < 1 for 0 ≤ x < 1,

lim
d→∞

(

1 − xd(2 − x)d
)n−1

= 1when 0 ≤ x < 1 and zero for x = 1. Furthermore, for �xed x in the interval f is non-negativeand does not derease as d grows.The onditions of the lemma are thus ful�lled and we get

E(w) = lim
d→∞

∫ 1

0

(

1 − xd(2 − x)d
)n−1

dxE(w) =

∫ 1

0

lim
d→∞

(

1 − xd(2 − x)d
)n−1

dx =

∫ 1

0

1dx = 1.Note: the alulation was based on the limit of the integrand being one for a �xed n. Thesame an be shown to hold even if the number of points n is any polynomial funtion ofthe dimension d (but the orresponding limiting proedure is a bit more ompliated). Wean thus say that a polynomial number of points is not enough to densely over the ubeas the dimension of the spae inreases.vi) E(w) ≈ ( 1
n
)1/d sine this gives the volume 1

n

for one small ube, and there are n of them.Also this approximation tends to unity if n is any polynomial of d.4


