
T-61.5040 Oppivat mallit ja menetelmätT-61.5040 Learning Models and MethodsPajunen, ViitaniemiSolutions to exerises 1, 19.1.2007Problem 1.We show that in eah ase we an �nd a model that �ts perfetly to the observations butyet it does not give any reasonable predition outside the observations. The system is asfollows:
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i) We modify the prede�ned model only at the observations, so that the model gives aorret value at the observations.
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ii) We modify the prede�ned model in a neighborhood of radius ε of the observations.Here ε an be arbitrarily small. Now the model is ontinuos.
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iii) Consider funtion exp(−x2) that is in�nitely many times di�erentiable. We an adda suitably saled exp(−x2) at the points of the observations. By saling the argument1

of the exponential, exp(−x2) an be made so thin that within a distane of ε from theobservations, the values of the modi�ed model and the original model di�er only at most
δ.The value of the exponential must be saled so that the value of the observations is�reahed� (see �gure), and its sign is hosen positive or negative aording whether thevalue of the observation is larger or smaller than the value of the original model. Also,the exponential must be entered at xi for observation i. The new model is thus

f(x) +
∑

i

bi exp(−ai(x − xi)
2)where f is the prede�ned model and ai and bi are saling parameters, di�erent for eahobservation. The �gure shows an example of a situation where the original, prede�nedmodel (here, a sinusoid) is added with saled exponentials at the observations.
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f(x) − 0.5exp(−25(x−1)2) + 1.5exp(−20(x−3)2)

Problem 2.i) 8 bits per pixel and 256 × 256 pixels gives a total of 524 288 bits.ii) Using a ode of length n we an losslessly ode 2n di�erent images, beause eah bitof the binary ode an assume 2 values. Some of these images an be losslessly odedusing a shorter ode, too, for example using a ode of length (n − 10). Using a ode oflength (n − 10) we an ode 2n−10 di�erent images. Thus among the 2n original images,

2n−10

2n
≈ 0.001 or about one of a thousand images an be oded using this shorter ode.iii) Lossless ompression of a natural image is not as di�ult as desribed above. Natu-ral images often ontain redundany: areas of onstant gray level or repeating strutu-res. Using this redundany, the information ontent of the images an be presented in aompressed form. However, the ompression will be suesful only if reasonably orret2



assumptions about the struture in images are made. Even if �generi� algorithms (suhas LZW) may work fairly well, the assumptions are inluded (impliitly) in the algorithm.Problem 3.i) Any predition will be equally good, sine for any predited bit there are exatly twovetors with the same n−1 bits and the last bits are di�erent. The probability of makinga mistake is 1/2 for any method.ii) Assume a bag ontains N vetors. Take any predition method and ompute its e�e-tiveness by alulating the number of mistakes it makes for any given bag of vetors. Youan onstrut another bag of vetors by �ipping the last bit in eah vetor. All possiblebags an now be paired so that the predition method will make exatly N mistakes whenapplied to the pair of bags. We may assume that it is equally possible that the unknownbag is either one of this kind of pairs. Then the average error rate will be 1/2 for onevetor. This is the same as ahieved by guessing.This shows that it is pointless to try to learn from data when there are no assumptions.An assumption would orrespond to a spei� bag, or a set of bags with a probability foreah bag.iii) We �rst assume that the training vetors are piked from the bag of vetors. Then weknow the bag ontains those vetors and possibly some unknown vetors. When a newvetor is drawn, hek if its �rst n− 1 bits math any of the training vetors. If not, thenguess the last bit sine again you an make pairs of bags where the non-training vetorshave their last bit �ipped.If the �rst n − 1 bits math a training vetor, then predit the last bit to be the same asfor the training vetor. You might use f1 to do this. This follows beause you have no apriori reason to assume that the bag ontains an unbalaned set of unknown vetors withthe same n − 1 �rst bits.If the training are not piked from the bag of vetors, any strategy performs as well asguessing (by part ii). The strategy outlined earlier is optimal also in this ase. Thus wemay onlude that the above mentioned strategy is optimal even though the problemstatement leaves it unlear, whether the training vetors are piked from the vetor bag.We see that training data alone tells us something about the training data itself but not-hing else. Again without assumptions, you annot make better preditions than guessingoutside the training data.iv) One an again onsider all possible bags ontaining 10% of the possible binary vetorsand make pairs out of them by �ipping the last bit. This will make the predition errorto be 1/2 on average.This shows that even when the problem has "struture", as one might assume that real-world problems have, it is not possible to learn from data without making fairly orretassumptions about the struture. 3

Comments on all parts: these problems illustrate the ideas behind the No Free Lunh-theorems by David H. Wolpert (see e.g. Neural Computation 8, 1341-1390 (1996). Theatual theorems are more general than preditions of bits but the ideas are more or lessobvious from the above problems.)Problem 4.In a randomly hosen binary bag, the expeted predition error is 1/2 for the same reasonas in the previous problem, part iv).For the spei� bag in whih the BVM seems to perform so well the situation is a bitmore deliate. The expeted predition error on vetors whose �rst n − 1 bits do notmath with any of the sampled n vetors is 1/2 for the same reason as in the previousproblem, part iv). The vetors that have n − 1 bits ommon with some sampled vetorbias the expetation somewhat, but numerially the di�erene is small for any larger n asthe proportion of mathing vetors in the bag is at most 2n
0,1·2n

= 5n
2n−2 , e.g. for n = 15 lessthan 1/100.The problem illustrates the "validation"of a learning method by simply testing it on sometraining data. If one really makes no assumptions about the ontents of the bag, then thegood performane of BVM on training data is just luk. Otherwise the BVM and the bagare "mathed", i.e. the ontents of the bag are suh that BVM an be expeted to workbetter than average.Does the good performane on training data suggest that BVM and the bag of vetors"math"? It does not, using the argument from the previous problem, part iii). Trainingset without any additional information annot give information about unobserved data.Therefore we annot guarantee that the performane of BVM is good outside the trainingset.This problem illustrates that the ommonly used validation of a heuristi learning methodis atually wrong, unless additional assumptions are made. Often these assumptions arenot expliitly stated, but are impliit.Problem 5.First assume the algorithms A and B to be deterministi. We have a set of all binary bags

{Bi}, Bi denoting the i:th bag. Let us write CA = CA(Bi) for the proportion of preditionerrors of the method A for the bag Bi. Correspondingly, CB = CB(Bi) is the proportionof predition errors of the method B for the bag Bi.If we assume that any bag Bi is equally probable, then CA and CB are random variables.The di�erene D = CA−CB is also a random variable. We are interested in the distributionof D, more spei�ally the tail probabilities of the distribution.D an be written as a sum over the predition errors on all vetors in the bag. Sine anybag is equally probable, then eah predition error is independent from the others.Write D informally as ∑
j 2−n+1(CA(xj) − CB(xj)) where xj is a vetor in a bag. Eah4



term is in the interval [−2−n+1, 2−n+1]. Then we an use the Hoe�ding inequality to obtain

p(D − E(D) ≥ ǫ) ≤ exp(−2ǫ2/25−n)From this we get easily

p(|D − E(D)| ≥ ǫ) ≤ 2 exp(−2ǫ2/25−n)(Where does the Hoe�ding inequality ome from? Plug the distribution of the given formto Cherno� bound P (X ≥ λ) ≤ infr≥0 E[er(X−λ)], hoose suitable r and approximate theresult.)Above we assumed the algorithms A and B are deterministi. However, the results holdalso for non-deterministi algorithms. This an be seen as follows: let r.v G denote all thenon-determinism in the algorithms A and B. We an interhange the order of randomlyseleting the bag and piking the value for G as the algorithms are independent of thehosen bag. If we �rst �x G, the remaining parts of the algorithms are deterministi andfor a �xed value of G we an get the results as below. But the results then hold for anyhoie for G, i.e. always regardless of the non-determinism.When we plug in the numbers given in the assignment, we obtain a limit for the tailprobability:

P (|CA − CB| ≥ 1/128) ≤ 2 exp(−2ǫ2/2−15) < 0.04Interpretation: if you are prediting bits using 20-bit input vetors with any given algo-rithm, then in less than four perent of all suh predition problems is your performaneto be even slightly di�erent than that obtained by guessing. Thus beating guessing is notonly hard on average, it also happens in a very small part of all problems (for deterministialgorithms).We ould alternatively use Chebyhev's theorem to get a bound for the tail probabilitiesof the distribution of D: P(|D − E(D)| > ǫ) ≤
1

ǫ2

Var(D).We know that D gets values in the range [−1, 1] and is symmetri about the origin.Therefore the expetation E(D) = 0.Let N denote number of vetors for whih A and B disagree. Let S denote the number ofases where A is wrong and B is right and T = N − S the opposite ases.The number S of ones is has a Bin(N, 1/2) distribution. HeneE(S) = N/2and Var(S) = N/4.5

Now Var(D) = Var(2−(n−1)[S − T ]) = 2−2n+2Var(2[S − N/2]) = 2−2n+2 · 4Var(S)

= 2−2n+2N ≤ 2−2n+22n−1 = 2−n+1.Here we used N ≤ 2n−1. We are now ready to apply Chebyshev's inequality:
P (|D| ≥ ǫ) <

1

ǫ2
2−n+1.When we plug in the numbers given in the assignment, we obtain a limit for the tailprobability:

P (|CA − CB| ≥ 1/128) < 0.07.
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