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p(ỹ|y) ∝ exp

[

−
1

2

1

(c − kT C−1k)
(ỹ − kT C−1y)2

]

.We are asked to on�rm this result. Here y is a vetor of training data, ỹ is the salarvalue we are trying to predit, and all other symbols will be de�ned shortly.We an alulate the preditive distribution as

p(ỹ|y) = p(y, ỹ)/p(y).Here p(y) = N(y|0, C) and p(y, ỹ) = N((y ỹ)|0, C̃), where

C̃ =

[
C k
kT c

]

.Above, C is a n × n matrix, c is a salar, and k is a n × 1 vetor.Now we are able to employ the formulas given in the problem. We get

E(ỹ|y) = E(ỹ) + Cov(y, ỹ)(Var(y))−1(y − E(y))

= 0 + kT C−1(y − 0)

= kT C−1y,as required. Similarly,Var(ỹ|y) = Var(ỹ) − Cov(y, ỹ)(Var(y))−1Cov(ỹ, y)

= c − kT C−1k.If we have n training points (the length of the vetor y is n), the matrix C is of size n×nand its inverse takes O(n3) multipliations to ompute. All the other omputations areat most O(n2) so the total ost is O(n3).When the matrix C−1 has been omputed one, it does not hange when prediting newpoints. Only the vetor k ontaining the ovarianes between the new point and all thetraining points hanges. To ompute the preditive mean, we only need an inner produt
kT C−1y where C−1y is a �xed vetor. This takes O(n) multipliations.The preditive variane has a quadrati form kT C−1k whih an be written as ∑

i

∑

j kikj[C
−1]ijand therefore takes O(n2) multipliations. 1

To summarize: solving the regression �rst takes O(n3) steps. Prediting the mean of newpoints takes O(n) steps, and prediting the variane of new points takes O(n2) steps.Problem 2.i) At eah time ti, the expeted value of B(ti) = 0, sine B(ti) − B(0) = B(ti) is Nor-mally distributed with zero mean. The ovariane funtion C(ti, tj) is then E(B(ti)B(tj)).Assume ti > tj and write

C(ti, tj) = E [B(ti)B(tj)]

= E [
{B(ti) − B(tj)}B(tj) + B2(tj)

]

= E [{B(ti) − B(tj)}B(tj)] + E [
B2(tj)

]

= E [
B2(tj)

]

= tj .So the ovariane is C(ti, tj) = min(ti, tj). This proess atually exists and is ontinuousbut nowhere di�erentiable, despite the innoent-looking ovariane.ii) The expeted value is E(y) = E(wTx + e) = 0 given the noise assumption. Theovariane funtion is then by de�nition
C(xi, xj) = E(yiyj)

= E((wTxi + ei)(w
T xj + ej))

= E(xT
i wwTxj) + σ2δij

= xT
i xj + σ2δij,where δij = 1 if i = j and 0 otherwise.iii) The expeted value is zero, sine E(b) = E(vi) = 0. The ovariane funtion is then

C(xi, xj) = E(f(xi)f(xj)) = E[

(b +
∑

k

vkhik)(b +
∑

k

vkhjk)

]

,where hik = exp(− 1

2σ2 ‖xi − uk‖
2). Computing further gives

C(xi, xj) = σ2

b +
∑

k

E(v2

khikhjk)

= σ2

b +
∑

k

σ2

vE(hikhjk)

= σ2

b + Kσ2

vE(hikhjk).These steps follow from the independent zero-mean priors on the weights, and the i.i.d. priorfor vk's. It remains to ompute the expetation. This isE(hikhjk) =

∫

exp(−
1

2σ2
[(xi − u)T (xi − u) + (xj − u)T (xj − u)])p(u)du.2



Now we assume that σ2

u is very large ompared to σ2 and omit the distribution p(u) ≈
constant.The exponent an be written as a sum of an u-dependent and an x-dependent term:

−
1

2
[2uT u − 2(xi + xj)

T u + xT
i xi + xT

j xj ]σ
−2 = −[(u − m)T (u − m) + g(xi, xj)]σ

−2

= −[uT u − 2mT u + mT m + g(xi, xj)]σ
−2.First �nd m: Comparing the terms in the left and right sides of the above equation, mmust be m = 1

2
[xi + xj ]. Then

g(xi, xj) =
1

2
(xT

i xi + xT
j xj) − mT m

=
1

4
(xT

i xi + xT
j xj) −

1

2
(xT

i xj)

=
1

4
(xi − xj)

T (xi − xj).This �nishes the solution, sine the integral over u simply integrates the term

exp(−(u − m)T (u − m)) whih results in a onstant. What remains is

exp(−1

4
(xi − xj)

T (xi − xj)).The �nal ovariane is approximately

C(xi, xj) ≈ σ2

b + σ2

vK
′ exp(−

1

4
(xi − xj)

T (xi − xj)),where K ′ is a onstant.Problem 3.i) To �nd the mode of p(u|x̃D) we maximise log p(u|x̃D) over the latent variables ui(u = {u1, . . . , un}). We use the Bayes Theorem to obtain

p(u|x̃, D) = p(u|x̃, x, y) ∝ [
∏

i

p(yi|ui, x̃, x)]p(u|x̃, x) = [
∏

i

p(yi|ui)]p(u|x̃, x)To �nd the onditional prior p(u|x̃, x) we assume another set of latent variables w linearlyrelated to u: ui = xT
i w ⇒ u = XT w. Now we an reasonably assume all the dependeneon the data x to be in the linear transformation matrix XT and use a prior for w that isindependent of x: p(w|x̃, x) = p(w). As instruted, we take p(w) = N(w|0, I). Sine u isa linear ombination of zero mean normally distributed variables w, its distribution alsois a zero mean Gaussian distribution: p(u|x̃, x) = N(u|0, C). The ovariane matrix C isgiven by

C = Eu|x̃,x[uuT ] = Ew|x̃,x[X
T w(XT w)T ] = XT Ew|x̃,x[wwT ]

︸ ︷︷ ︸

=I

X = XT X.Inserting the prior into the funtion to be maximised, we have
log p(u|x̃, D) = [

∑

i

log p(yi|ui)] −
1

2
uT C−1u + constant.3

As hinted, we insert the assumption w = Xa in u = XT w and obtain u = XTXa = Ca.This gives

uTC−1u = aT Ca.But sine w = Xa we have that also wTw = aT XT Xa = aT Ca. Therefore uT C−1u =
‖w‖2.We an thus maximise

log p(u|x̃, D) = [
∑

i

log p(yi|ui)] −
1

2
‖w‖2 + constantWe may as well minimise

‖w‖2 − 2
∑

i

log p(yi|ui)Substitute the given distribution p(yi|ui) to obtain
‖w‖2 + 2

∑

i

log(1 + exp(−2yiw
Txi))where we have used ui = wTxi.ii) In the above ost funtion there are two parts. The ‖w‖2 part is independent of thetraining samples, whereas the sum evaluates the e�ieny of the linear lassi�er in las-sifying the training samples. Consider the e�et of single training point i on the sum.From the expression for p(yi|ui) we see that yi is likely have the same sign as ui = wT xi.With large |ui| dependeny is very sharp. yiw

T xi < 0 is the indiator for sample i beingprobably mislassi�ed.In the ase of almost ertain mislassi�ation yiw
Txi << 0 the orresponding term inthe sum is approximately −2yiw

Txi, a large positive number. For a probable orretlassi�ation yiw
Txi >> 1 the term in the sum is aproximately zero.Similar onsiderations apply also to the soft-margin SVM ost funtion. The ost has al-so in this ase a training sample independent term ‖w‖2. In the sum, samples lassi�edsuesfully with large enough margin (yi(w

Txi) ≥ 1) are not penalised at all. Mislassi-�ations yi(w
Txi) << 0 result in a large positive ost.Generally, the GP lassi�er is more or less lose to the soft-margin SVM, depending onthe distribution p(yi|ui).
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