T-61.5040 Oppivat mallit ja menetelmät

T-61.5040 Learning Models and Methods

Pajunen, Viitaniemi

Solutions to exercise 12, 20.4.2007

Problem 1.

In the lectures, the predictive distribution was given as

$$
p(\tilde{y} \mid y) \propto \exp \left[-\frac{1}{2} \frac{1}{\left(c-k^{T} C^{-1} k\right)}\left(\tilde{y}-k^{T} C^{-1} y\right)^{2}\right] .
$$

We are asked to confirm this result. Here y is a vector of training data, \tilde{y} is the scalar value we are trying to predict, and all other symbols will be defined shortly.

We can calculate the predictive distribution as

$$
p(\tilde{y} \mid y)=p(y, \tilde{y}) / p(y) .
$$

Here $p(y)=N(y \mid 0, C)$ and $p(y, \tilde{y})=N((y \tilde{y}) \mid 0, \tilde{C})$, where

$$
\tilde{C}=\left[\begin{array}{cc}
C & k \\
k^{T} & c
\end{array}\right]
$$

Above, C is a $n \times n$ matrix, c is a scalar, and k is a $n \times 1$ vector.
Now we are able to employ the formulas given in the problem. We get

$$
\begin{aligned}
E(\tilde{y} \mid y) & =E(\tilde{y})+\operatorname{Cov}(y, \tilde{y})(\operatorname{Var}(y))^{-1}(y-E(y)) \\
& =0+k^{T} C^{-1}(y-0) \\
& =k^{T} C^{-1} y
\end{aligned}
$$

as required. Similarly,

$$
\begin{aligned}
\operatorname{Var}(\tilde{y} \mid y) & =\operatorname{Var}(\tilde{y})-\operatorname{Cov}(y, \tilde{y})(\operatorname{Var}(y))^{-1} \operatorname{Cov}(\tilde{y}, y) \\
& =c-k^{T} C^{-1} k .
\end{aligned}
$$

If we have n training points (the length of the vector y is n), the matrix C is of size $n \times n$ and its inverse takes $\mathcal{O}\left(n^{3}\right)$ multiplications to compute. All the other computations are at most $\mathcal{O}\left(n^{2}\right)$ so the total cost is $\mathcal{O}\left(n^{3}\right)$.

When the matrix C^{-1} has been computed once, it does not change when predicting new points. Only the vector k containing the covariances between the new point and all the training points changes. To compute the predictive mean, we only need an inner product $k^{T} C^{-1} y$ where $C^{-1} y$ is a fixed vector. This takes $\mathcal{O}(n)$ multiplications.

The predictive variance has a quadratic form $k^{T} C^{-1} k$ which can be written as $\sum_{i} \sum_{j} k_{i} k_{j}\left[C^{-1}\right]_{i j}$ and therefore takes $\mathcal{O}\left(n^{2}\right)$ multiplications.

To summarize: solving the regression first takes $\mathcal{O}\left(n^{3}\right)$ steps. Predicting the mean of new points takes $\mathcal{O}(n)$ steps, and predicting the variance of new points takes $\mathcal{O}\left(n^{2}\right)$ steps.

Problem 2.

i) At each time t_{i}, the expected value of $B\left(t_{i}\right)=0$, since $B\left(t_{i}\right)-B(0)=B\left(t_{i}\right)$ is Normally distributed with zero mean. The covariance function $C\left(t_{i}, t_{j}\right)$ is then $\mathrm{E}\left(B\left(t_{i}\right) B\left(t_{j}\right)\right)$. Assume $t_{i}>t_{j}$ and write

$$
\begin{aligned}
C\left(t_{i}, t_{j}\right) & =\mathrm{E}\left[B\left(t_{i}\right) B\left(t_{j}\right)\right] \\
& =\mathrm{E}\left[\left\{B\left(t_{i}\right)-B\left(t_{j}\right)\right\} B\left(t_{j}\right)+B^{2}\left(t_{j}\right)\right] \\
& =\mathrm{E}\left[\left\{B\left(t_{i}\right)-B\left(t_{j}\right)\right\} B\left(t_{j}\right)\right]+\mathrm{E}\left[B^{2}\left(t_{j}\right)\right] \\
& =\mathrm{E}\left[B^{2}\left(t_{j}\right)\right] \\
& =t_{j}
\end{aligned}
$$

So the covariance is $C\left(t_{i}, t_{j}\right)=\min \left(t_{i}, t_{j}\right)$. This process actually exists and is continuous but nowhere differentiable, despite the innocent-looking covariance
ii) The expected value is $\mathrm{E}(y)=\mathrm{E}\left(w^{T} x+e\right)=0$ given the noise assumption. The covariance function is then by definition

$$
\begin{aligned}
C\left(x_{i}, x_{j}\right) & =\mathrm{E}\left(y_{i} y_{j}\right) \\
& =\mathrm{E}\left(\left(w^{T} x_{i}+e_{i}\right)\left(w^{T} x_{j}+e_{j}\right)\right) \\
& =\mathrm{E}\left(x_{i}^{T} w w^{T} x_{j}\right)+\sigma^{2} \delta_{i j} \\
& =x_{i}^{T} x_{j}+\sigma^{2} \delta_{i j},
\end{aligned}
$$

where $\delta_{i j}=1$ if $i=j$ and 0 otherwise.
iii) The expected value is zero, since $\mathrm{E}(b)=\mathrm{E}\left(v_{i}\right)=0$. The covariance function is then

$$
C\left(x_{i}, x_{j}\right)=\mathrm{E}\left(f\left(x_{i}\right) f\left(x_{j}\right)\right)=\mathrm{E}\left[\left(b+\sum_{k} v_{k} h_{i k}\right)\left(b+\sum_{k} v_{k} h_{j k}\right)\right],
$$

where $h_{i k}=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{i}-u_{k}\right\|^{2}\right)$. Computing further gives

$$
\begin{aligned}
C\left(x_{i}, x_{j}\right) & =\sigma_{b}^{2}+\sum_{k} \mathrm{E}\left(v_{k}^{2} h_{i k} h_{j k}\right) \\
& =\sigma_{b}^{2}+\sum_{k} \sigma_{v}^{2} \mathrm{E}\left(h_{i k} h_{j k}\right) \\
& =\sigma_{b}^{2}+K \sigma_{v}^{2} \mathrm{E}\left(h_{i k} h_{j k}\right)
\end{aligned}
$$

These steps follow from the independent zero-mean priors on the weights, and the i.i.d. prior for v_{k} 's. It remains to compute the expectation. This is

$$
\mathrm{E}\left(h_{i k} h_{j k}\right)=\int \exp \left(-\frac{1}{2 \sigma^{2}}\left[\left(x_{i}-u\right)^{T}\left(x_{i}-u\right)+\left(x_{j}-u\right)^{T}\left(x_{j}-u\right)\right]\right) p(u) d u .
$$

Now we assume that σ_{u}^{2} is very large compared to σ^{2} and omit the distribution $p(u) \approx$ constant.

The exponent can be written as a sum of an u-dependent and an x-dependent term:

$$
\begin{aligned}
-\frac{1}{2}\left[2 u^{T} u-2\left(x_{i}+x_{j}\right)^{T} u+x_{i}^{T} x_{i}+x_{j}^{T} x_{j}\right] \sigma^{-2} & =-\left[(u-m)^{T}(u-m)+g\left(x_{i}, x_{j}\right)\right] \sigma^{-2} \\
& =-\left[u^{T} u-2 m^{T} u+m^{T} m+g\left(x_{i}, x_{j}\right)\right] \sigma^{-2}
\end{aligned}
$$

First find m : Comparing the terms in the left and right sides of the above equation, m must be $m=\frac{1}{2}\left[x_{i}+x_{j}\right]$. Then

$$
\begin{aligned}
g\left(x_{i}, x_{j}\right) & =\frac{1}{2}\left(x_{i}^{T} x_{i}+x_{j}^{T} x_{j}\right)-m^{T} m \\
& =\frac{1}{4}\left(x_{i}^{T} x_{i}+x_{j}^{T} x_{j}\right)-\frac{1}{2}\left(x_{i}^{T} x_{j}\right) \\
& =\frac{1}{4}\left(x_{i}-x_{j}\right)^{T}\left(x_{i}-x_{j}\right) .
\end{aligned}
$$

This finishes the solution, since the integral over u simply integrates the term $\exp \left(-(u-m)^{T}(u-m)\right)$ which results in a constant. What remains is $\exp \left(-\frac{1}{4}\left(x_{i}-x_{j}\right)^{T}\left(x_{i}-x_{j}\right)\right)$.
The final covariance is approximately

$$
C\left(x_{i}, x_{j}\right) \approx \sigma_{b}^{2}+\sigma_{v}^{2} K^{\prime} \exp \left(-\frac{1}{4}\left(x_{i}-x_{j}\right)^{T}\left(x_{i}-x_{j}\right)\right)
$$

where K^{\prime} is a constant.

Problem 3.

i) To find the mode of $p(u \mid \tilde{x} D)$ we maximise $\log p(u \mid \tilde{x} D)$ over the latent variables u_{i} $\left(u=\left\{u_{1}, \ldots, u_{n}\right\}\right)$. We use the Bayes Theorem to obtain

$$
p(u \mid \tilde{x}, D)=p(u \mid \tilde{x}, x, y) \propto\left[\prod_{i} p\left(y_{i} \mid u_{i}, \tilde{x}, x\right)\right] p(u \mid \tilde{x}, x)=\left[\prod_{i} p\left(y_{i} \mid u_{i}\right)\right] p(u \mid \tilde{x}, x)
$$

To find the conditional prior $p(u \mid \tilde{x}, x)$ we assume another set of latent variables w linearly related to $u: u_{i}=x_{i}^{T} w \Rightarrow u=X^{T} w$. Now we can reasonably assume all the dependence on the data x to be in the linear transformation matrix X^{T} and use a prior for w that is independent of $x: p(w \mid \tilde{x}, x)=p(w)$. As instructed, we take $p(w)=N(w \mid 0, I)$. Since u is a linear combination of zero mean normally distributed variables w, its distribution also is a zero mean Gaussian distribution: $p(u \mid \tilde{x}, x)=N(u \mid 0, C)$. The covariance matrix C is given by

$$
C=E_{u \mid \tilde{x}, x}\left[u u^{T}\right]=E_{w \mid \tilde{x}, x}\left[X^{T} w\left(X^{T} w\right)^{T}\right]=X^{T} \underbrace{E_{w \mid \tilde{x}, x}\left[w w^{T}\right]}_{=I} X=X^{T} X .
$$

Inserting the prior into the function to be maximised, we have

$$
\log p(u \mid \tilde{x}, D)=\left[\sum_{i} \log p\left(y_{i} \mid u_{i}\right)\right]-\frac{1}{2} u^{T} C^{-1} u+\text { constant. }
$$

As hinted, we insert the assumption $w=X a$ in $u=X^{T} w$ and obtain $u=X^{T} X a=C a$. This gives

$$
u^{T} C^{-1} u=a^{T} C a
$$

But since $w=X a$ we have that also $w^{T} w=a^{T} X^{T} X a=a^{T} C a$. Therefore $u^{T} C^{-1} u=$ $\|w\|^{2}$.
We can thus maximise

$$
\log p(u \mid \tilde{x}, D)=\left[\sum_{i} \log p\left(y_{i} \mid u_{i}\right)\right]-\frac{1}{2}\|w\|^{2}+\text { constant }
$$

We may as well minimise

$$
\|w\|^{2}-2 \sum_{i} \log p\left(y_{i} \mid u_{i}\right)
$$

Substitute the given distribution $p\left(y_{i} \mid u_{i}\right)$ to obtain

$$
\|w\|^{2}+2 \sum_{i} \log \left(1+\exp \left(-2 y_{i} w^{T} x_{i}\right)\right)
$$

where we have used $u_{i}=w^{T} x_{i}$.
ii) In the above cost function there are two parts. The $\|w\|^{2}$ part is independent of the training samples, whereas the sum evaluates the efficiency of the linear classiffier in classifying the training samples. Consider the effect of single training point i on the sum. From the expression for $p\left(y_{i} \mid u_{i}\right)$ we see that y_{i} is likely have the same sign as $u_{i}=w^{T} x_{i}$. With large $\left|u_{i}\right|$ dependency is very sharp. $y_{i} w^{T} x_{i}<0$ is the indicator for sample i being probably misclassified.
In the case of almost certain misclassification $y_{i} w^{T} x_{i} \ll 0$ the corresponding term in the sum is approximately $-2 y_{i} w^{T} x_{i}$, a large positive number. For a probable correct classification $y_{i} w^{T} x_{i} \gg 1$ the term in the sum is aproximately zero.

Similar considerations apply also to the soft-margin SVM cost function. The cost has also in this case a training sample independent term $\|w\|^{2}$. In the sum, samples classified succesfully with large enough margin $\left(y_{i}\left(w^{T} x_{i}\right) \geq 1\right)$ are not penalised at all. Misclassifications $y_{i}\left(w^{T} x_{i}\right) \ll 0$ result in a large positive cost.
Generally, the GP classifier is more or less close to the soft-margin SVM, depending on the distribution $p\left(y_{i} \mid u_{i}\right)$.

