\section*{T-61.5040 Oppivat mallit ja menetelmät

T-61.5040 Learning Models and Methods

T-61.5040 Learning Models and Methods

Pajunen, Viitaniemi

Solutions to exercise 10, 30.3.2007

Problem 1.

i) Use the product rule to obtain

$$
p(y, L \mid \theta, \lambda)=p(y \mid L, \theta, \lambda) p(L \mid \theta, \lambda)=p(y \mid L, \theta) p(L \mid \lambda)
$$

Here we dropped λ from $p(y \mid L, \theta, \lambda)$ because when L is known, λ has no effect on y :s distribution. Also, we dropped θ from $p(L \mid \theta, \lambda)$ because L is independent of θ.

The first term is

$$
p(y \mid L, \theta)=\prod_{i} \prod_{j}\left[N\left(y_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)\right]^{L_{i j}}
$$

The exponent $L_{i j}$ is used to force the term to be equal to one when $L_{i j}=0$. This way each observation y_{i} gets exactly one term different from one in the product. This term is the mixture distribution having generated y_{i}

The second term is

$$
\begin{equation*}
p(L \mid \lambda)=\prod_{i} \prod_{j} \lambda_{j}^{L_{i j}} \tag{*}
\end{equation*}
$$

Again, the exponent is used to make some terms equal to one. This term can be understood as follows: consider a vector $L_{i}=\left(L_{i 1}, L_{i 2}, \ldots, L_{i m}\right)$. Exactly one of the components is one, and others are zero. Since the probability that $L_{i j}=1$ is λ_{j}, then the probability that $L_{i}=(0,0, \ldots, 1, \ldots, 0)$ is also λ_{j}. So we have to pick the single λ_{j} corresponding to $L_{i j}=1$ for each observation y_{i} in the product (*).

Finally, multiply the terms together to get

$$
p(y, L \mid \theta, \lambda)=\prod_{i} \prod_{j}\left[N\left(y_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)\right]^{L_{i j}} \lambda_{j}^{L_{i j}}=\prod_{i} \prod_{j}\left[\lambda_{j} N\left(y_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)\right]^{L_{i j}}
$$

which is other way of writing the result that was to be shown.
ii) For the Gibbs sampler for θ, we need $p(\theta \mid y, L)$

$$
p(\theta \mid y, L) \propto p(y \mid \theta, L) p(\theta \mid L) \propto p(y \mid \theta, L)
$$

since θ and L are independent of each other and we assume a constant prior for θ
Since $p\left(y_{i} \mid \theta, L\right)=N\left(y_{i} \mid \mu_{j}, \sigma_{j}^{2}\right), L_{i j}=1$ the posterior factorizes into terms including each μ_{j}. Each term is a subproblem where the unknown Normal mean μ_{j} is inferred with a known variance. Old results apply and the posteriors are

$$
p\left(\mu_{j} \mid y, L\right)=N\left(\mu_{j} \mid s_{j}, \sigma_{j}^{2} / n_{j}\right)
$$

where s_{j} is the sample average of all y_{i} :s that are from mixture j, and n_{j} is the number of such y_{i} :s. (We assumed σ_{j}^{2} known, so θ consists of μ_{j} 's only.)

Then the Gibbs sampler for L. By the product rule we get

$$
p(L \mid y, \theta)=p(L, y \mid \theta) / p(y \mid \theta)
$$

Fix i and find the distribution $p\left(L_{i k}=1, y_{i} \mid \theta\right)$.
Since $p\left(L_{i k}=1, y_{i} \mid \theta\right)=p\left(y_{i} \mid L_{i k}=1, \theta\right) p\left(L_{i k}=1 \mid \theta\right)=p\left(y_{i} \mid L_{i k}=1, \theta\right) p\left(L_{i k}=1\right)$, we get

$$
p\left(L_{i k}=1, y_{i} \mid \theta\right)=N\left(y_{i} \mid \mu_{k}, \sigma_{k}^{2}\right) \lambda_{k}
$$

Since $p\left(y_{i} \mid \theta\right)=\sum_{j} p\left(y_{i}, L_{i j}=1 \mid \theta\right)=\sum_{j} p\left(y_{i} \mid L_{i j}=1, \theta\right) p\left(L_{i j}=1 \mid \theta\right)=\sum_{j} \lambda_{j} N\left(y_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)$,
the result is

$$
p\left(L_{i k}=1 \mid y_{i}, \theta\right)=N\left(y_{i} \mid \mu_{k}, \sigma_{k}^{2}\right) \lambda_{k} / \sum_{j} \lambda_{j} N\left(y_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)
$$

This can be simulated for each i, since it defines a discrete distribution over the values $k=1,2, \ldots, m$.

Now the Gibbs sampler is ready and consists of alternating the simulation of μ_{j} :s and simulation of $L_{i j}$:s. If desired also $p(L \mid y, \theta)$ could be written out explicitly but the resulting formula would be cumbersome and is not needed for the simulation.

Problem 2.

We consider the likelihood

$$
p(y \mid \theta, \lambda)=\prod_{i} p\left(y_{i} \mid \theta, \lambda\right)=\prod_{i}\left[\lambda_{1} N\left(y_{i} \mid \mu_{1}, \sigma^{2}\right)+\lambda_{2} N\left(y_{i} \mid \mu_{2}, \sigma^{2}\right)\right],
$$

where θ is the set of parameters. We wish to maximize the likelihood with respect to the parameters μ_{1} and μ_{2}. This is the same as maximizing the log-likelihood. We utilize the Newton-Rhapson update formula

$$
\mu_{m, \text { new }}=\mu_{m}-(\log p)^{\prime} /(\log p)^{\prime \prime},
$$

where $p=p(y \mid \theta, \lambda)$.
The derivative of the log-likelihood with respect to μ_{m} is now (see lectures)

$$
(\log p)^{\prime}=\sum_{i} p\left(L_{i m}=1 \mid \theta, y_{i}\right) \sigma^{-2}\left(y_{i}-\mu_{m}\right)
$$

The second derivative is, assuming $p\left(L_{i m}=1 \mid \theta, y_{i}\right)$ is constant with respect to μ_{m},

$$
\begin{aligned}
(\log p)^{\prime \prime} & \approx \sum_{i} p\left(L_{i m}=1 \mid \theta, y_{i}\right)\left(\sigma^{-2}\left(y_{i}-\mu_{m}\right)\right)^{\prime} \\
& =\sum_{i} p\left(L_{i m}=1 \mid \theta, y_{i}\right)\left(-\sigma^{-2}\right) .
\end{aligned}
$$

The ratio $(\log p)^{\prime} /(\log p)^{\prime \prime}$ is

$$
\left[\sum_{i} p\left(L_{i m}=1 \mid \theta, y_{i}\right)\left(y_{i}-\mu_{m}\right) \sigma^{-2}\right] /\left[\sum_{i} p\left(L_{i m}=1 \mid \theta, y_{i}\right)\left(-\sigma^{-2}\right)\right]
$$

The terms σ^{-2} cancel out and we have

$$
-\left[\sum_{i} p\left(L_{i m}=1 \mid \theta, y_{i}\right)\left(y_{i}-\mu_{m}\right)\right] /\left[\sum_{i} p\left(L_{i m}=1 \mid \theta, y_{i}\right)\right]
$$

The mean μ_{m} does not depend on i so it comes out of the sum: finally,

$$
(\log p)^{\prime} /(\log p)^{\prime \prime}=\mu_{m}-\frac{\sum_{i} p\left(L_{i m}=1 \mid \theta, y_{i}\right) y_{i}}{\sum_{i} p\left(L_{i m}=1 \mid \theta, y_{i}\right)} .
$$

Finally, the Newton-Rhapson step is

$$
\mu_{m, \text { new }}=\frac{\sum_{i} p\left(L_{i m}=1 \mid \theta, y_{i}\right) y_{i}}{\sum_{i} p\left(L_{i m}=1 \mid \theta, y_{i}\right)} .
$$

EM interpretation: $p\left(L_{i m}=1 \mid \theta, y_{i}\right)$ corresponds to $q(L)$. In the E step, we average $\log p(\theta \mid y)$ over the distribution $q(L)$, and this is what actually happens in $(\log p)^{\prime}$. In the M step, we assume $q(L)$ is fixed; similarly we did not differentiate $q(L)$ with respect to μ_{m} in the Newton-Raphson update.

Problem 3.

The Kullback-Leibler divergence is

$$
D(q \| p)=\int \log \frac{q(x)}{p(x)} q(x) d x=E_{q}(\log q-\log p)
$$

KL divergence gives the average number of bits that are wasted by encoding events from a distribution q with a code based on the distribution p. KL divergence is always nonnegative and zero if $q=p$.

Now

$$
-D(q \| p(s \mid a, y))=E_{q}(\log p(s \mid a, y))-E_{q}(\log q)
$$

and

$$
\begin{aligned}
-D(q \| p(s \mid a, y))+\log p(a \mid y) & =-D(q| | p(s \mid a, y))+E_{q}(\log p(a \mid y)) \\
& =E_{q}(\log p(s \mid a, y))-E_{q}(\log q)+E_{q}(\log p(a \mid y)) \\
& =E_{q}(\log (p(s \mid a, y) p(a \mid y)))-E_{q}(\log q) \\
& =E_{q}(\log p(s, a \mid y))-E_{q}(\log q) \\
& =F(q, a)
\end{aligned}
$$

The first step, choosing a distribution $q(s)$ that maximizes F, is equivalent to minimizing $D(q \| p(s \mid a, y))$ since $\log p(a \mid y)$ does not depend on q. So we are looking for a distribution q
as close as possible to $p\left(s \mid a_{0}, y\right)$ where a_{0} is the current value for the parameters. Naturally we may choose $q=p\left(s \mid a_{0}, y\right)$, making the KL divergence 0 .

Next the parameters a are updated to maximize F. Now both terms in F are affected. If a_{1} maximizes $F(q, a)$ then the second term $\log p(a \mid y)$ must increase or remain the same when a_{0} is changed to a_{1}. This is because after the previous step, $F\left(q, a_{0}\right)=0+\log p\left(a_{0} \mid y\right)$. Since

$$
F\left(q, a_{1}\right)=-D\left(p\left(s \mid a_{0}, y\right) \| p\left(s \mid a_{1}, y\right)\right)+\log p\left(a_{1} \mid y\right)
$$

where the first term is negative or zero, the last term must be at least as large as $\log p\left(a_{0} \mid y\right)$ (otherwise $F\left(q, a_{1}\right)<F\left(q, a_{0}\right)$ which is a contradiction as we chose a_{1} so that it maximizes $F)$. We get

$$
\log p\left(a_{1} \mid y\right) \geq \log p\left(a_{0} \mid y\right) \Longrightarrow p\left(a_{1} \mid y\right) \geq p\left(a_{0} \mid y\right)
$$

In the Generalized EM (GEM) algorithm, the new parameters a_{1} are chosen so that the value of F increases, instead of maximizing F. The above derivations still hold, that is, $\log p(a \mid y)$ cannot decrease. If a_{1} is suitably chosen, the convergence of the GEM algorithm may be faster than the convergence of the original EM.

Problem 4.

In the M-step of the EM algorithm, we wish to maximize

$$
F(q, a)=\sum_{m} \sum_{i}\left[\log N\left(y_{i} \mid \mu_{m}, \Sigma_{m}\right)+\log \lambda_{m}\right] \tau_{i m}
$$

with respect to the unknown parameters λ_{m}, μ_{m} and Σ_{m} while regarding $\tau_{i m}$ as constants. We have written a as a shorthand for the non-latent parameters. Also, we have $\tau_{i m}=$ $p\left(L_{i m}=1 \mid a, y_{i}\right)$.

We first maximize $F(q, a)$ with respect to λ_{m}. The first term does not contain λ_{m}; we may leave it out for now. Include the constraint $\sum_{m} \lambda_{m}=1$ with a Lagrange multiplier β and set the derivative to zero:

$$
\frac{\partial}{\partial \lambda_{m}}\left[\sum_{m} \sum_{i} \log \lambda_{m} \tau_{i m}+\beta\left(\sum_{m} \lambda_{m}-1\right)\right]=\frac{1}{\lambda_{m}} \sum_{i} \tau_{i m}+\beta=0
$$

which gives

$$
\lambda_{m}=-\frac{1}{\beta} \sum_{i} \tau_{i m}
$$

By using the constraint $\sum_{m} \lambda_{m}=1$ we get $-\frac{1}{\beta} \sum_{i} \sum_{m} \tau_{i m}=-\frac{1}{\beta} \sum_{i} 1=1 \Longrightarrow-\beta=N$. Then

$$
\lambda_{m}=\frac{1}{N} \sum_{i} \tau_{i m} .
$$

Next, we maximize $F(q, a)$ with respect to μ_{m}. Only the first term of the expression contains μ_{m}. We substitute in the probability density function of a Normal distribution
and set the derivative to zero:

$$
\begin{aligned}
& \frac{\partial}{\partial \mu_{m}}\left[\sum_{m} \sum_{i} \log N\left(y_{i} \mid \mu_{m}, \Sigma_{m}\right) \tau_{i m}\right] \\
= & \frac{\partial}{\partial \mu_{m}}\left[\sum_{m} \sum_{i}\left(-\frac{1}{2} \log \left|\Sigma_{m}\right|-\frac{1}{2}\left(y_{i}-\mu_{m}\right) \Sigma_{m}^{-1}\left(y_{i}-\mu_{m}\right)+K\right) \tau_{i m}\right] \\
= & \sum_{i} \Sigma_{m}^{-1}\left(y_{i}-\mu_{m}\right) \tau_{i m}=0 .
\end{aligned}
$$

Here, K is a constant. Thus the expectation of mixture component m is a weighted sum over observations, the weights $\tau_{i m}$ telling at which degree each observation y_{i} comes from the component distribution m :

$$
\mu_{m}=\frac{\sum_{i} y_{i} \tau_{i m}}{\sum_{i} \tau_{i m}} .
$$

Similarly, setting the derivative with respect to Σ_{m} to zero we would get an update formula for Σ_{m}. The update formula is not derived here.

Comments: the update formulas are easy to interpret since they are weighted averages over quantities that are clearly related to the parameters. The weights $\tau_{i m}$ take into consideration the importance of sample y_{i} in representing the mixture component m.

Some references to the EM algorithm:
Redner and Walker: Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2), 1984.
Bilmes: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian Mixture and Hidden Markov Models. Tech. Report TR-97-021, UC Berkeley www.icsi.berkeley.edu/ftp/global/pub/techreports/1997/tr-97-021.pdf

