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p(y, L|θ, λ) = p(y|L, θ, λ)p(L|θ, λ) = p(y|L, θ)p(L|λ)Here we dropped λ from p(y|L, θ, λ) beause when L is known, λ has no e�et on y:sdistribution. Also, we dropped θ from p(L|θ, λ) beause L is independent of θ.The �rst term is

p(y|L, θ) =
∏

i

∏

j

[N(yi|µj, σ
2

j )]
LijThe exponent Lij is used to fore the term to be equal to one when Lij = 0. This way,eah observation yi gets exatly one term di�erent from one in the produt. This term isthe mixture distribution having generated yi.The seond term is

p(L|λ) =
∏

i

∏

j

λ
Lij

j (∗)Again, the exponent is used to make some terms equal to one. This term an be understoodas follows: onsider a vetor Li = (Li1, Li2, . . . , Lim). Exatly one of the omponents isone, and others are zero. Sine the probability that Lij = 1 is λj , then the probabilitythat Li = (0, 0, . . . , 1, . . . , 0) is also λj. So we have to pik the single λj orresponding to

Lij = 1 for eah observation yi in the produt (∗).Finally, multiply the terms together to get

p(y, L|θ, λ) =
∏

i

∏

j

[N(yi|µj, σ
2

j )]
Lijλ

Lij

j =
∏

i

∏

j

[λjN(yi|µj, σ
2

j )]
Lij ,whih is other way of writing the result that was to be shown.ii) For the Gibbs sampler for θ, we need p(θ|y, L).

p(θ|y, L) ∝ p(y|θ, L)p(θ|L) ∝ p(y|θ, L)sine θ and L are independent of eah other and we assume a onstant prior for θ .Sine p(yi|θ, L) = N(yi|µj, σ
2

j ), Lij = 1 the posterior fatorizes into terms inluding eah
µj. Eah term is a subproblem where the unknown Normal mean µj is inferred with aknown variane. Old results apply and the posteriors are

p(µj|y, L) = N(µj |sj, σ
2

j /nj)1

where sj is the sample average of all yi:s that are from mixture j, and nj is the numberof suh yi:s. (We assumed σ2

j known, so θ onsists of µj's only.)Then the Gibbs sampler for L. By the produt rule we get
p(L|y, θ) = p(L, y|θ)/p(y|θ)Fix i and �nd the distribution p(Lik = 1, yi|θ).Sine p(Lik = 1, yi|θ) = p(yi|Lik = 1, θ)p(Lik = 1|θ) = p(yi|Lik = 1, θ)p(Lik = 1), we get

p(Lik = 1, yi|θ) = N(yi|µk, σ
2

k)λkSine p(yi|θ) =
∑

j p(yi, Lij = 1|θ) =
∑

j p(yi|Lij = 1, θ)p(Lij = 1|θ) =
∑

j λjN(yi|µj, σ
2

j ),the result is

p(Lik = 1|yi, θ) = N(yi|µk, σ
2

k)λk/
∑

j

λjN(yi|µj, σ
2

j )This an be simulated for eah i, sine it de�nes a disrete distribution over the values

k = 1, 2, . . . , m.Now the Gibbs sampler is ready and onsists of alternating the simulation of µj:s andsimulation of Lij :s. If desired also p(L|y, θ) ould be written out expliitly but the resultingformula would be umbersome and is not needed for the simulation.Problem 2.We onsider the likelihood
p(y|θ, λ) =

∏

i

p(yi|θ, λ) =
∏

i

[

λ1N(yi|µ1, σ
2) + λ2N(yi|µ2, σ

2)
]

,where θ is the set of parameters. We wish to maximize the likelihood with respet to theparameters µ1 and µ2. This is the same as maximizing the log-likelihood. We utilize theNewton-Rhapson update formula

µm,new = µm − (log p)′/(log p)′′,where p = p(y|θ, λ).The derivative of the log-likelihood with respet to µm is now (see letures)

(log p)′ =
∑

i

p(Lim = 1|θ, yi)σ
−2(yi − µm).The seond derivative is, assuming p(Lim = 1|θ, yi) is onstant with respet to µm,

(log p)′′ ≈
∑

i

p(Lim = 1|θ, yi)(σ
−2(yi − µm))′

=
∑

i

p(Lim = 1|θ, yi)(−σ−2).2



The ratio (log p)′/(log p)′′ is

[

∑

i

p(Lim = 1|θ, yi)(yi − µm)σ−2

]

/

[

∑

i

p(Lim = 1|θ, yi)(−σ−2)

]

.The terms σ−2 anel out and we have

−

[

∑

i

p(Lim = 1|θ, yi)(yi − µm)

]

/

[

∑

i

p(Lim = 1|θ, yi)

]

.The mean µm does not depend on i so it omes out of the sum: �nally,

(log p)′/(log p)′′ = µm −

∑

i p(Lim = 1|θ, yi)yi
∑

i p(Lim = 1|θ, yi)
.Finally, the Newton-Rhapson step is

µm,new =

∑

i p(Lim = 1|θ, yi)yi
∑

i p(Lim = 1|θ, yi)
.EM interpretation: p(Lim = 1|θ, yi) orresponds to q(L). In the E step, we average

log p(θ|y) over the distribution q(L), and this is what atually happens in (log p)′. Inthe M step, we assume q(L) is �xed; similarly we did not di�erentiate q(L) with respetto µm in the Newton-Raphson update.Problem 3.The Kullbak-Leibler divergene is

D(q||p) =

∫

log
q(x)

p(x)
q(x)dx = Eq(log q − log p).KL divergene gives the average number of bits that are wasted by enoding events from adistribution q with a ode based on the distribution p. KL divergene is always nonnegativeand zero if q = p.Now

−D(q||p(s|a, y)) = Eq(log p(s|a, y))− Eq(log q)and

−D(q||p(s|a, y)) + log p(a|y) = −D(q||p(s|a, y)) + Eq(log p(a|y))

= Eq(log p(s|a, y))− Eq(log q) + Eq(log p(a|y))

= Eq(log(p(s|a, y)p(a|y)) )− Eq(log q)

= Eq(log p(s, a|y))− Eq(log q)

= F (q, a).The �rst step, hoosing a distribution q(s) that maximizes F , is equivalent to minimizing
D(q||p(s|a, y)) sine log p(a|y) does not depend on q. So we are looking for a distribution q3

as lose as possible to p(s|a0, y) where a0 is the urrent value for the parameters. Naturallywe may hoose q = p(s|a0, y), making the KL divergene 0.Next the parameters a are updated to maximize F . Now both terms in F are a�eted. If
a1 maximizes F (q, a) then the seond term log p(a|y) must inrease or remain the samewhen a0 is hanged to a1. This is beause after the previous step, F (q, a0) = 0+log p(a0|y).Sine

F (q, a1) = −D(p(s|a0, y)||p(s|a1, y)) + log p(a1|y)where the �rst term is negative or zero, the last term must be at least as large as log p(a0|y)(otherwise F (q, a1) < F (q, a0) whih is a ontradition as we hose a1 so that it maximizes

F ). We get

log p(a1|y) ≥ log p(a0|y) =⇒ p(a1|y) ≥ p(a0|y).In the Generalized EM (GEM) algorithm, the new parameters a1 are hosen so that thevalue of F inreases, instead of maximizing F . The above derivations still hold, that is,

log p(a|y) annot derease. If a1 is suitably hosen, the onvergene of the GEM algorithmmay be faster than the onvergene of the original EM.Problem 4.In the M-step of the EM algorithm, we wish to maximize

F (q, a) =
∑

m

∑

i

[log N(yi|µm, Σm) + log λm]τimwith respet to the unknown parameters λm, µm and Σm while regarding τim as onstants.We have written a as a shorthand for the non-latent parameters. Also, we have τim =
p(Lim = 1|a, yi).We �rst maximize F (q, a) with respet to λm. The �rst term does not ontain λm; wemay leave it out for now. Inlude the onstraint ∑

m λm = 1 with a Lagrange multiplier

β and set the derivative to zero:

∂

∂λm

[

∑

m

∑

i

log λm τim + β(
∑

m

λm − 1)

]

=
1

λm

∑

i

τim + β = 0whih gives
λm = −

1

β

∑

i

τim.By using the onstraint ∑

m λm = 1 we get − 1

β

∑

i

∑

m τim = − 1

β

∑

i 1 = 1 =⇒ −β = N .Then

λm =
1

N

∑

i

τim.Next, we maximize F (q, a) with respet to µm. Only the �rst term of the expressionontains µm. We substitute in the probability density funtion of a Normal distribution4



and set the derivative to zero:

∂

∂µm

[

∑

m

∑

i

log N(yi|µm, Σm)τim

]

=
∂

∂µm

[

∑

m

∑

i

(−
1

2
log |Σm| −

1

2
(yi − µm)Σ−1

m (yi − µm) + K) τim

]

=
∑

i

Σ−1

m (yi − µm) τim = 0.Here, K is a onstant. Thus the expetation of mixture omponent m is a weighted sumover observations, the weights τim telling at whih degree eah observation yi omes fromthe omponent distribution m:

µm =

∑

i yiτim
∑

i τim

.Similarly, setting the derivative with respet to Σm to zero we would get an update formulafor Σm. The update formula is not derived here.Comments: the update formulas are easy to interpret sine they are weighted averagesover quantities that are learly related to the parameters. The weights τim take intoonsideration the importane of sample yi in representing the mixture omponent m.Some referenes to the EM algorithm:Redner and Walker: Mixture densities, maximum likelihood and the EM algorithm. SIAMReview, 26(2), 1984.Bilmes: A gentle tutorial of the EM algorithm and its appliation to parameter estimationfor Gaussian Mixture and Hidden Markov Models. Teh. Report TR-97-021, UC Berkeley.www.isi.berkeley.edu/ftp/global/pub/tehreports/1997/tr-97-021.pdf
5


