T-61.5040 Oppivat mallit ja menetelmät T-61.5040 Learning Models and Methods Pajunen, Viitaniemi

Solutions to exercise 10, 30.3.2007

Problem 1.

i) Use the product rule to obtain

$$p(y, L|\theta, \lambda) = p(y|L, \theta, \lambda)p(L|\theta, \lambda) = p(y|L, \theta)p(L|\lambda)$$

Here we dropped λ from $p(y|L, \theta, \lambda)$ because when L is known, λ has no effect on y:s distribution. Also, we dropped θ from $p(L|\theta, \lambda)$ because L is independent of θ .

The first term is

$$p(y|L,\theta) = \prod_{i} \prod_{j} [N(y_i|\mu_j,\sigma_j^2)]^{L_{ij}}$$

The exponent L_{ij} is used to force the term to be equal to one when $L_{ij} = 0$. This way, each observation y_i gets exactly one term different from one in the product. This term is the mixture distribution having generated y_i .

The second term is

$$p(L|\lambda) = \prod_{i} \prod_{j} \lambda_{j}^{L_{ij}} \quad (*)$$

Again, the exponent is used to make some terms equal to one. This term can be understood as follows: consider a vector $L_i = (L_{i1}, L_{i2}, \ldots, L_{im})$. Exactly one of the components is one, and others are zero. Since the probability that $L_{ij} = 1$ is λ_j , then the probability that $L_i = (0, 0, \ldots, 1, \ldots, 0)$ is also λ_j . So we have to pick the single λ_j corresponding to $L_{ij} = 1$ for each observation y_i in the product (*).

Finally, multiply the terms together to get

$$p(y,L|\theta,\lambda) = \prod_{i} \prod_{j} [N(y_i|\mu_j,\sigma_j^2)]^{L_{ij}} \lambda_j^{L_{ij}} = \prod_{i} \prod_{j} [\lambda_j N(y_i|\mu_j,\sigma_j^2)]^{L_{ij}},$$

which is other way of writing the result that was to be shown.

ii) For the Gibbs sampler for θ , we need $p(\theta|y, L)$.

$$p(\theta|y,L) \propto p(y|\theta,L)p(\theta|L) \propto p(y|\theta,L)$$

since θ and L are independent of each other and we assume a constant prior for θ .

Since $p(y_i|\theta, L) = N(y_i|\mu_j, \sigma_j^2)$, $L_{ij} = 1$ the posterior factorizes into terms including each μ_j . Each term is a subproblem where the unknown Normal mean μ_j is inferred with a known variance. Old results apply and the posteriors are

$$p(\mu_j|y,L) = N(\mu_j|s_j, \sigma_j^2/n_j)$$

where s_j is the sample average of all y_i :s that are from mixture j, and n_j is the number of such y_i :s. (We assumed σ_i^2 known, so θ consists of μ_j 's only.)

Then the Gibbs sampler for L. By the product rule we get

$$p(L|y,\theta) = p(L,y|\theta)/p(y|\theta)$$

Fix *i* and find the distribution $p(L_{ik} = 1, y_i | \theta)$.

Since
$$p(L_{ik} = 1, y_i | \theta) = p(y_i | L_{ik} = 1, \theta) p(L_{ik} = 1 | \theta) = p(y_i | L_{ik} = 1, \theta) p(L_{ik} = 1)$$
, we get

$$p(L_{ik} = 1, y_i | \theta) = N(y_i | \mu_k, \sigma_k^2) \lambda_k$$

Since $p(y_i|\theta) = \sum_j p(y_i, L_{ij} = 1|\theta) = \sum_j p(y_i|L_{ij} = 1, \theta)p(L_{ij} = 1|\theta) = \sum_j \lambda_j N(y_i|\mu_j, \sigma_j^2)$, the result is $p(L_{ik} = 1|y_i, \theta) = N(y_i|\mu_k, \sigma_k^2)\lambda_k / \sum_j \lambda_j N(y_i|\mu_j, \sigma_j^2)$

This can be simulated for each i, since it defines a discrete distribution over the values $k = 1, 2, \ldots, m$.

Now the Gibbs sampler is ready and consists of alternating the simulation of μ_j :s and simulation of L_{ij} :s. If desired also $p(L|y,\theta)$ could be written out explicitly but the resulting formula would be cumbersome and is not needed for the simulation.

Problem 2.

We consider the likelihood

$$p(y|\theta,\lambda) = \prod_{i} p(y_i|\theta,\lambda) = \prod_{i} \left[\lambda_1 N(y_i|\mu_1,\sigma^2) + \lambda_2 N(y_i|\mu_2,\sigma^2)\right],$$

where θ is the set of parameters. We wish to maximize the likelihood with respect to the parameters μ_1 and μ_2 . This is the same as maximizing the log-likelihood. We utilize the Newton-Rhapson update formula

$$\mu_{m,new} = \mu_m - (\log p)' / (\log p)'',$$

where $p = p(y|\theta, \lambda)$.

The derivative of the log-likelihood with respect to μ_m is now (see lectures)

$$(\log p)' = \sum_{i} p(L_{im} = 1|\theta, y_i)\sigma^{-2}(y_i - \mu_m).$$

The second derivative is, assuming $p(L_{im} = 1 | \theta, y_i)$ is constant with respect to μ_m ,

$$(\log p)'' \approx \sum_{i} p(L_{im} = 1|\theta, y_i)(\sigma^{-2}(y_i - \mu_m))'$$

= $\sum_{i} p(L_{im} = 1|\theta, y_i)(-\sigma^{-2}).$

The ratio $(\log p)'/(\log p)''$ is

$$\sum_{i=1}^{n} p(L_{im} = 1|\theta, y_i)(y_i - \mu_m)\sigma^{-2} \right] / \left[\sum_{i=1}^{n} p(L_{im} = 1|\theta, y_i)(-\sigma^{-2})\right]$$

The terms σ^{-2} cancel out and we have

$$-\left[\sum_{i} p(L_{im} = 1|\theta, y_i)(y_i - \mu_m)\right] / \left[\sum_{i} p(L_{im} = 1|\theta, y_i)\right]$$

The mean μ_m does not depend on *i* so it comes out of the sum: finally,

$$(\log p)'/(\log p)'' = \mu_m - \frac{\sum_i p(L_{im} = 1|\theta, y_i)y_i}{\sum_i p(L_{im} = 1|\theta, y_i)}.$$

Finally, the Newton-Rhapson step is

$$\mu_{m,new} = \frac{\sum_{i} p(L_{im} = 1|\theta, y_i)y_i}{\sum_{i} p(L_{im} = 1|\theta, y_i)}.$$

EM interpretation: $p(L_{im} = 1 | \theta, y_i)$ corresponds to q(L). In the E step, we average $\log p(\theta|y)$ over the distribution q(L), and this is what actually happens in $(\log p)'$. In the M step, we assume q(L) is fixed; similarly we did not differentiate q(L) with respect to μ_m in the Newton-Raphson update.

Problem 3.

The Kullback-Leibler divergence is

$$D(q||p) = \int \log \frac{q(x)}{p(x)} q(x) dx = E_q(\log q - \log p).$$

KL divergence gives the average number of bits that are wasted by encoding events from a distribution q with a code based on the distribution p. KL divergence is always nonnegative and zero if q = p.

Now

$$-D(q||p(s|a, y)) = E_q(\log p(s|a, y)) - E_q(\log q)$$

and

$$\begin{aligned} -D(q||p(s|a,y)) + \log p(a|y) &= -D(q||p(s|a,y)) + E_q(\log p(a|y)) \\ &= E_q(\log p(s|a,y)) - E_q(\log q) + E_q(\log p(a|y)) \\ &= E_q(\log(p(s|a,y)p(a|y))) - E_q(\log q) \\ &= E_q(\log p(s,a|y)) - E_q(\log q) \\ &= F(q,a). \end{aligned}$$

The first step, choosing a distribution q(s) that maximizes F, is equivalent to minimizing D(q||p(s|a, y)) since $\log p(a|y)$ does not depend on q. So we are looking for a distribution q

as close as possible to $p(s|a_0, y)$ where a_0 is the current value for the parameters. Naturally we may choose $q = p(s|a_0, y)$, making the KL divergence 0.

Next the parameters a are updated to maximize F. Now both terms in F are affected. If a_1 maximizes F(q, a) then the second term $\log p(a|y)$ must increase or remain the same when a_0 is changed to a_1 . This is because after the previous step, $F(q, a_0) = 0 + \log p(a_0|y)$. Since

$$F(q, a_1) = -D(p(s|a_0, y)||p(s|a_1, y)) + \log p(a_1|y)$$

where the first term is negative or zero, the last term must be at least as large as $\log p(a_0|y)$ (otherwise $F(q, a_1) < F(q, a_0)$ which is a contradiction as we chose a_1 so that it maximizes F). We get

$$\log p(a_1|y) \ge \log p(a_0|y) \implies p(a_1|y) \ge p(a_0|y)$$

In the Generalized EM (GEM) algorithm, the new parameters a_1 are chosen so that the value of F increases, instead of maximizing F. The above derivations still hold, that is, $\log p(a|y)$ cannot decrease. If a_1 is suitably chosen, the convergence of the GEM algorithm may be faster than the convergence of the original EM.

Problem 4.

In the M-step of the EM algorithm, we wish to maximize

$$F(q, a) = \sum_{m} \sum_{i} [\log N(y_i | \mu_m, \Sigma_m) + \log \lambda_m] \tau_{im}$$

with respect to the unknown parameters λ_m , μ_m and Σ_m while regarding τ_{im} as constants. We have written a as a shorthand for the non-latent parameters. Also, we have $\tau_{im} = p(L_{im} = 1|a, y_i)$.

We first maximize F(q, a) with respect to λ_m . The first term does not contain λ_m ; we may leave it out for now. Include the constraint $\sum_m \lambda_m = 1$ with a Lagrange multiplier β and set the derivative to zero:

$$\frac{\partial}{\partial \lambda_m} \left[\sum_m \sum_i \log \lambda_m \ \tau_{im} + \beta (\sum_m \lambda_m - 1) \right] = \frac{1}{\lambda_m} \sum_i \tau_{im} + \beta = 0$$

which gives

$$\lambda_m = -\frac{1}{\beta} \sum_i \tau_{im}.$$

By using the constraint $\sum_{m} \lambda_m = 1$ we get $-\frac{1}{\beta} \sum_i \sum_m \tau_{im} = -\frac{1}{\beta} \sum_i 1 = 1 \implies -\beta = N$. Then

$$\lambda_m = \frac{1}{N} \sum_i \tau_{im}.$$

Next, we maximize F(q, a) with respect to μ_m . Only the first term of the expression contains μ_m . We substitute in the probability density function of a Normal distribution

and set the derivative to zero:

$$\frac{\partial}{\partial \mu_m} \left[\sum_m \sum_i \log N(y_i | \mu_m, \Sigma_m) \tau_{im} \right]$$

= $\frac{\partial}{\partial \mu_m} \left[\sum_m \sum_i (-\frac{1}{2} \log |\Sigma_m| - \frac{1}{2} (y_i - \mu_m) \Sigma_m^{-1} (y_i - \mu_m) + K) \tau_{im} \right]$
= $\sum_i \Sigma_m^{-1} (y_i - \mu_m) \tau_{im} = 0.$

Here, K is a constant. Thus the expectation of mixture component m is a weighted sum over observations, the weights τ_{im} telling at which degree each observation y_i comes from the component distribution m:

$$\mu_m = \frac{\sum_i y_i \tau_{im}}{\sum_i \tau_{im}}.$$

Similarly, setting the derivative with respect to Σ_m to zero we would get an update formula for Σ_m . The update formula is not derived here.

Comments: the update formulas are easy to interpret since they are weighted averages over quantities that are clearly related to the parameters. The weights τ_{im} take into consideration the importance of sample y_i in representing the mixture component m.

Some references to the EM algorithm:

Redner and Walker: Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2), 1984.

 $\begin{array}{l} \mbox{Bilmes: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian Mixture and Hidden Markov Models. Tech. Report TR-97-021, UC Berkeley. www.icsi.berkeley.edu/ftp/global/pub/techreports/1997/tr-97-021.pdf \end{array}$