T-61.5040 Oppivat mallit ja menetelmät
 T-61.5040 Learning Models and Methods
 Pajunen, Viitaniemi

Exercises 8, 16.3.2007

Problem 1.

Assume that the true posterior is $p(\theta \mid y)=N\left(\theta \mid 0, \sigma^{2} I\right)$, where $\theta \in \mathbb{R}^{1000}$. You try to perform rejection sampling using a proposal density $g(\theta)=N\left(\theta \mid 0, \sigma_{g}^{2} I\right)$. Suppose that your proposal density is close to the true posterior so that $\sigma_{g}=1.1 \sigma$. Compute approximately how many samples are rejected.

Problem 2.(demonstration)

The Metropolis algorithm simulates a posterior by starting from a value θ^{0}. Then the algorithm repeats a step n which produces value θ^{n} give $\theta^{n-1}, n=1,2,3, \ldots$ In the nth step of the algorithm a new value θ^{*} is picked from a jumping distribution $J\left(\theta^{*} \mid \theta^{n-1}\right)$. The new value is accepted $\left(\theta^{n}=\theta^{*}\right)$ with a probability $p_{r}=\min \{1, r\}$ where $r=\frac{p\left(\theta^{*} \mid y\right)}{p\left(\theta^{n-1} \mid y\right)}$. If it is not accepted, the next sample is $\theta^{n}=\theta^{n-1}$.

Assume that the Markov chain defined by the Metropolis algorithm has a unique stationary distribution. Show that this distribution is the posterior $p(\theta \mid y)$ (assume that the jumping distribution is symmetric).

What if the posterior is $1 / 2 p_{1}(\theta \mid y)+1 / 2 p_{2}(\theta \mid y)$, where p_{1} and p_{2} are uniform distributions over $[0,1]$ and $[2,3]$, respectively? Can you think of a jumping distribution that prevents a unique stationary distribution?

Problem 3.

Observe data y_{1}, \ldots, y_{n} from a Normal distribution $N\left(\mu, \sigma^{2}\right)$. Assume both μ and σ^{2} are unknown. Choose the priors as $p(\mu \mid \sigma)=N\left(\mu \mid \mu_{0}, \sigma_{0}^{2}\right)$ and $p\left(\sigma^{2}\right)=I G\left(\sigma^{2} \mid a, b\right)$.
i) Formulate the Gibbs Sampler for the unknowns μ and σ^{2}.
ii) Describe how you estimate the posterior mean of μ using the simulated posterior. Recall that Monte Carlo approximation is $\mathrm{E}\left(h\left(\mu, \sigma^{2}\right) \mid y\right) \approx \frac{1}{N} \sum_{i} h\left(\mu_{i}, \sigma_{i}^{2}\right)$ where $\left(\mu_{i}, \sigma_{i}^{2}\right)$ is the i:th simulated posterior sample.

Hint: inverse-gamma distribution is $I G(z \mid a, b) \propto z^{-(a+1)} \exp (-b / z)$. It is a conjugate prior for σ^{2} when the model is $N\left(\mu, \sigma^{2}\right)$ where μ is known. Writing $y=\frac{1}{n} \sum_{i}\left(y_{i}-\mu\right)^{2}$, the posterior for σ^{2} is

$$
p\left(\sigma^{2} \mid D\right)=I G\left(\sigma^{2} \left\lvert\, \frac{n}{2}+a\right., \frac{1}{2}(2 b+n y)\right) .
$$

Problem 4.

You have observed independent samples y_{1}, \ldots, y_{n} from a distribution

$$
p(y \mid a, b)=b \exp (-b(y-a)), \text { when } y \geq a \text { and } p(y \mid a, b)=0, \text { when } y<a .
$$

The parameters a and b are nonnegative.
i) Choose an uninformative prior $p(a, b) \propto b^{-1}$ and compute the unnormalized posterior of a and b. Which two scalar functions of data y_{1}, \ldots, y_{n} determine the posterior?
ii) Write a Gibbs Sampler for the posterior. Hint: Gamma distribution for x is $\operatorname{Gamma}(\theta \mid c, d) \propto x^{c-1} \exp (-d x)$.
Another hint: you don't have to simulate a if it seems difficult. You might want to simulate $\exp (a b n)$, since you can solve a from these values when b is known.

