T-61.5040 Oppivat mallit ja menetelmät T-61.5040 Learning Models and Methods Pajunen, Viitaniemi

Exercises 7, 2.3 2007

Problem 1. Assume you have two coins, 1 and 2, and you toss each one n = 20 times. The first coin gives $y_1 = 12$ heads and the second one $y_2 = 9$ heads. The probability of heads for coin 1 is θ_1 , and for coin 2 it is θ_2 .

i) Perform Bayesian inference on θ_1 and θ_2 , assuming that the coins are independent and your prior for θ_i is $Beta(\theta_i|a, b)$.

ii) Repeat the same, assuming that $\theta = \theta_1 = \theta_2$

iii) The previous two parts either assumed that the coins have nothing to do with each other, or they are completely identical. Now assume that θ_i has a prior $Beta(\theta_i|a, b)$, and the variables a, b have exponential priors Exp(a|1), Exp(b|1). Write the posterior in the form

$$p(\theta_1, \theta_2, a, b | y_1, y_2) = p(\theta_1, \theta_2 | a, b, y_1, y_2) p(a, b | y_1, y_2)$$

Hint:

$$Beta(\theta|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\theta^{a-1}(1-\theta)^{b-1}$$
$$Bin(y|n,\theta) = \binom{n}{y}\theta^{y}(1-\theta)^{n-y}$$
$$Exp(x|\lambda) = \lambda e^{-\lambda x}$$

Problem 2.

Assume that y is Normally distributed with mean θ and variance σ^2 , both of which are unknown. Use the Jeffreys' prior separately for the unknown parameters, so that $p(\mu, \sigma^2) = p(\mu)p(\sigma^2)$.

i) Find the full posterior $p(\mu, \sigma^2 | y)$

ii) Find the conditional posterior $p(\mu|\sigma^2, y)$

iii) Integrate μ out from $p(\mu, \sigma^2 | y)$ Hint: write the integral as $C \int N(\mu | a, b) d\mu$, which equals C, since $N(\mu | a, b)$ is a probability distribution.

iv) Find the posterior $p(\mu|y)$ Hint: a Gamma integral is $\int_0^\infty z^k \exp(-z) dz$ and a substitution $z = (y - \mu)^2 / 2\sigma^2$ will give you such an integral.

Problem 3.

You have observed x_1, \ldots, x_n from a Normal distribution $N(\theta_1, \sigma^2)$ and y_1, \ldots, y_m from $N(\theta_2, \sigma^2)$. The means θ_1 and θ_2 have a common prior $N(\mu, \tau^2)$ where μ and τ are hyperparameters. Use priors $p(\mu) \propto 1$, $p(\sigma^2) \propto \sigma^{-2}$ and $p(\tau^2) \propto \tau^{-1}$. Denote all data by D.

i) Find the distributions $p(\theta_i | \mu, \sigma, \tau, D), i = 1, 2$.

- ii) Find the distribution $p(\mu|\theta_1, \theta_2, \sigma, \tau, D)$
- iii) Find the distribution $p(\sigma^2|\theta_1, \theta_2, \mu, \tau, D)$
- iv) Find the distribution $p(\tau^2|\theta_1, \theta_2, \mu, \sigma, D)$

Hint: You will need one basic result not given in the lectures. An inverse-gamma distribution IG(z|a, b) has the density $IG(z|a, b) \propto z^{-(a+1)} \exp(-b/z)$. If you have a Normal distribution $N(\mu, \sigma^2)$ where μ is known, and a prior for the variance given by $p(\sigma^2) = IG(\sigma^2|a, b)$, then using *n* observations v_i and writing $v = \frac{1}{n} \sum_i (v_i - \mu)^2$, the posterior for σ^2 is

$$p(\sigma^2|D) = IG\left(\sigma^2 \left| \frac{n}{2} + a, \frac{1}{2}(2b + nv) \right. \right).$$

Use this result in parts iii) and iv).

Problem 4.

(Demonstration.) Assume that you have data y_1, \ldots, y_n where the likelihood is $p(y_i|\theta, \sigma_i^2) = N(y_i|\theta, \sigma_i^2)$. In other words, each sample is Normally distributed with mean θ and sampledependent variance σ_i^2 . Assume a constant prior $p(\theta|\sigma_i^2)$ and a prior $p(\sigma_i^2) \propto \sigma_i^{-7} \exp(-2\sigma_i^{-2})$. Compute the posterior distribution of θ . Suppose the data is 0, 0, 0, 0, 0, 4: compare the values $\theta = 0$ and $\theta = 1$ using this posterior, and using directly the likelihood with fixed variance.