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Problem 1.

You are given a set of observations (xi, yi), i = 1, . . . , N . If you want to predict y using ob-
served input x, the predicted value ŷ that minimizes the MSE E((ŷ−y)2) is the conditional

expectation E(y|x).

i) To demonstrate that knowing the joint distribution p(x, y) allows us to solve a regression
problem, compute E(y|x) as a function of p(x, y). Recall that p(y, x) = p(y|x)p(x) and
p(x) =

∫
p(x, y)dy.

ii) Estimate the joint distribution p(x, y) as a sum of localized density functions

K(x− xi, y − yi) = Kx(x− xi)Ky(y − yi)

where xi, yi are constants and Kx, Ky are also density functions:

K(x, y) = (2π)−1 exp(−0.5(x2 + y2))

Kx(x) = (2π)−1/2 exp(−0.5x2)

Ky(y) = (2π)−1/2 exp(−0.5y2).

iii) Now estimate E(y|x) using the above kernel estimate of the density function p(x, y).
Can you interpret the result geometrically?

Problem 2.

Consider a set of distinct input points x1, . . . , xn and all possible outputs yi ∈ {0, 1}.
This results in 2n di�erent regression functions. Assume that the points xi are ordered,
i.e. xi < xj when i < j.

i) Calculate the number of di�erent classi�ers if we assume that all classi�cation problems
are �nice�: both classes 0 and 1 are clustered and there is exactly one i ∈ {1, 2, . . . , n− 1}
for which xi and xi+1 belong to di�erent classes.

ii) In Problem 5 / Exercise 1 we studied the probability for the di�erence between two clas-
si�ers. Now let us use the upper bound for di�erence in fraction of errors: P (di�erence ≥
ε) < 2e−ε2(n/2) where n is the number of input points. Compute the fraction of �nice�
problems from i), and use the upper bound to see how good a classi�er can possibly be
on �nice� problems.



Problem 3.

Consider two observations, y0 at an input x = 0, and y1 at an input x = 1. Assume that
you know the correct model and it is linear: y = µx + β + n, where n has a Normal
distribution N(0, 1) (1 is the noise variance).

Assume that you �t a line to these observations by minimizing the mean squared error,
and then use the linear model to predict the output at x = 2.

i) What is the mean squared error of the prediction at x = 2?

ii) Repeat part i), but instead of a line, �t a constant regression function. What can you
conclude if µ = 1?

Problem 4.(demo)

In high dimensions, observations tend to be far away from each other. To cover a high-
dimensional space, lots of data are needed.

Consider a d-dimensional unit hypercube [0, 1]d. Assume it contains n points which have
been randomly drawn from the uniform distribution. We will consider the L∞ norm

‖a− b‖∞ = max{|a1 − b1|, . . . , |ad − bd|}

where a = (a1, . . . , ad) and b = (b1, . . . , bd), both uniformly distributed.

i) What is the probability P (|a1−b1| ≤ x), i.e. what is the cumulative distribution function
of |a1 − b1|?

ii) What is the probability P (z ≤ x) where z = ‖a− b‖∞?

iii) Denote by zj the L∞ − distance from point 1 to point j where j = 2, . . . , n. Denote
by w the distance from point 1 to the closest point, i.e. w = minj zj. What is P (w ≤ x)?
Write E(w) as an integral over x.

iv) Solve the expected distance E(w) when d = 1.

v) What is limd→∞E(w) when number of points n is �xed?

vi) Roughly approximate E(w) by �lling the hypercube with n identical small cubes and
computing the side length of the small cube.

Lots of hints:

• The maximum z of a �nite set (w1, w2, . . . , wn) of random variables has the distri-
bution

P (z ≤ x) =
∏

i

P (wi ≤ x).

• The minimum z of a �nite set (w1, w2, . . . , wn) of random variables has the distri-



bution
P (z ≤ x) = 1−

∏
i

(1− P (wi ≤ x)).

• To compute expectation of a non-negative random variable using the distribution
function, use

E(w) =

∫ ∞

0

1− P (w ≤ x)dx.

• Monotone convergence lemma:

lim
d→∞

∫
fd(x)dx =

∫
lim
d→∞

fd(x)dx

when fd(x) ≥ 0, fd+1(x) ≥ fd(x) and limd→∞ fd(x) exists for all d and x.


