T-61.5040 Oppivat mallit ja menetelmät
 T-61.5040 Learning Models and Methods
 Pajunen, Viitaniemi

Exercises 2, 26.1.2007

Problem 1.

You are given a set of observations $\left(x_{i}, y_{i}\right), i=1, \ldots, N$. If you want to predict y using observed input x, the predicted value \hat{y} that minimizes the $\operatorname{MSE} \mathrm{E}\left((\hat{y}-y)^{2}\right)$ is the conditional expectation $\mathrm{E}(y \mid x)$.
i) To demonstrate that knowing the joint distribution $p(x, y)$ allows us to solve a regression problem, compute $\mathrm{E}(y \mid x)$ as a function of $p(x, y)$. Recall that $p(y, x)=p(y \mid x) p(x)$ and $p(x)=\int p(x, y) d y$.
ii) Estimate the joint distribution $p(x, y)$ as a sum of localized density functions

$$
K\left(x-x_{i}, y-y_{i}\right)=K_{x}\left(x-x_{i}\right) K_{y}\left(y-y_{i}\right)
$$

where x_{i}, y_{i} are constants and K_{x}, K_{y} are also density functions:

$$
\begin{aligned}
K(x, y) & =(2 \pi)^{-1} \exp \left(-0.5\left(x^{2}+y^{2}\right)\right) \\
K_{x}(x) & =(2 \pi)^{-1 / 2} \exp \left(-0.5 x^{2}\right) \\
K_{y}(y) & =(2 \pi)^{-1 / 2} \exp \left(-0.5 y^{2}\right)
\end{aligned}
$$

iii) Now estimate $\mathrm{E}(y \mid x)$ using the above kernel estimate of the density function $p(x, y)$. Can you interpret the result geometrically?

Problem 2.

Consider a set of distinct input points x_{1}, \ldots, x_{n} and all possible outputs $y_{i} \in\{0,1\}$. This results in 2^{n} different regression functions. Assume that the points x_{i} are ordered, i.e. $x_{i}<x_{j}$ when $i<j$.
i) Calculate the number of different classifiers if we assume that all classification problems are "nice": both classes 0 and 1 are clustered and there is exactly one $i \in\{1,2, \ldots, n-1\}$ for which x_{i} and x_{i+1} belong to different classes.
ii) In Problem 5 / Exercise 1 we studied the probability for the difference between two classifiers. Now let us use the upper bound for difference in fraction of errors: P (difference \geq $\epsilon)<2 e^{-\epsilon^{2}(n / 2)}$ where n is the number of input points. Compute the fraction of "nice" problems from i), and use the upper bound to see how good a classifier can possibly be on "nice" problems.

Problem 3.

Consider two observations, y_{0} at an input $x=0$, and y_{1} at an input $x=1$. Assume that you know the correct model and it is linear: $y=\mu x+\beta+n$, where n has a Normal distribution $N(0,1)$ (1 is the noise variance).

Assume that you fit a line to these observations by minimizing the mean squared error, and then use the linear model to predict the output at $x=2$.
i) What is the mean squared error of the prediction at $x=2$?
ii) Repeat part i), but instead of a line, fit a constant regression function. What can you conclude if $\mu=1$?

Problem 4.(demo)

In high dimensions, observations tend to be far away from each other. To cover a highdimensional space, lots of data are needed.

Consider a d-dimensional unit hypercube $[0,1]^{d}$. Assume it contains n points which have been randomly drawn from the uniform distribution. We will consider the L_{∞} norm

$$
\|a-b\|_{\infty}=\max \left\{\left|a_{1}-b_{1}\right|, \ldots,\left|a_{d}-b_{d}\right|\right\}
$$

where $a=\left(a_{1}, \ldots, a_{d}\right)$ and $b=\left(b_{1}, \ldots, b_{d}\right)$, both uniformly distributed.
i) What is the probability $P\left(\left|a_{1}-b_{1}\right| \leq x\right)$, i.e. what is the cumulative distribution function of $\left|a_{1}-b_{1}\right|$?
ii) What is the probability $P(z \leq x)$ where $z=\|a-b\|_{\infty}$?
iii) Denote by z_{j} the L_{∞}-distance from point 1 to point j where $j=2, \ldots, n$. Denote by w the distance from point 1 to the closest point, i.e. $w=\min _{j} z_{j}$. What is $P(w \leq x)$? Write $\mathrm{E}(w)$ as an integral over x.
iv) Solve the expected distance $\mathrm{E}(w)$ when $d=1$.
v) What is $\lim _{d \rightarrow \infty} \mathrm{E}(w)$ when number of points n is fixed?
vi) Roughly approximate $\mathrm{E}(w)$ by filling the hypercube with n identical small cubes and computing the side length of the small cube.

Lots of hints:

- The maximum z of a finite set $\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ of random variables has the distribution

$$
P(z \leq x)=\prod_{i} P\left(w_{i} \leq x\right)
$$

- The minimum z of a finite set $\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ of random variables has the distri-
bution

$$
P(z \leq x)=1-\prod_{i}\left(1-P\left(w_{i} \leq x\right)\right) .
$$

- To compute expectation of a non-negative random variable using the distribution function, use

$$
E(w)=\int_{0}^{\infty} 1-P(w \leq x) d x
$$

- Monotone convergence lemma:

$$
\lim _{d \rightarrow \infty} \int f_{d}(x) d x=\int \lim _{d \rightarrow \infty} f_{d}(x) d x
$$

when $f_{d}(x) \geq 0, f_{d+1}(x) \geq f_{d}(x)$ and $\lim _{d \rightarrow \infty} f_{d}(x)$ exists for all d and x.

