T-61.246 Digital Signal Processing and Filtering

2nd mid term exam / final exam 13th Dec 2004 at 9-12. Halls A and B.
If you are doing 2 nd MTE, reply to problems $3,4,5,6$.
If you are doing final exam, reply to problems $1,2,4,5,6$.
Write down, if you are doing 2nd MTE or final exam.
You may use a (graphical) calculator. You must clear all extra memory in your calculator. There is an additional formulae table given in the exam, but you can also use a math reference book of your own. Write down all necessary steps which lead to the results.

CS-department is collecting course feedback from all courses in autumn 2004.

PLEASE, GIVE FEEDBACK IN WEB

http://www.cs.hut.fi/Opinnot/Palaute/kurssipalaute-en.html.
The link can be found also from the course web page.

1. (6 p , final exam)
a) (2p) What is the fundamental period N_{0} of the sequence $x[n]=e^{j(\pi / 4) n}+\cos ((\pi / 3) n)$?
b) (2p) Sketch the amplitude response $\left|H\left(e^{j \omega}\right)\right|$ of the filter $y[n]=x[n]-2 x[n-1]+x[n-2]$.
c) $(2 \mathrm{p})$ Sketch the pole-zero-diagram of the filter

$$
H(z)=\frac{1-0.2 z^{-1}}{1+0.64 z^{-2}}
$$

2. (6p, final exam) The input sequence $x[n]$ to a causal LTI system produces output $y[n]$. Known values of $x[n]$ and $y[n]$, and the parametrized impulse response $h[n]$ are as follows:

$$
\begin{aligned}
x[n] & =\delta[n]+2 \delta[n-1]-\delta[n-2] \\
y[n] & =-\delta[n-1]-\delta[n-2]+5 \delta[n-3]+5 \delta[n-4]+4 \delta[n-5]+4 \delta[n-6]+4 \delta[n-7]+\ldots \\
h[n] & =\left\{\begin{array}{l}
a, \text { when } n<0 \\
b, \text { when } n=0 \\
c, \text { when } n=1 \\
d, \text { when } n=2 \\
e, \text { when } n>2
\end{array}\right.
\end{aligned}
$$

a) (4p) Determine the unknown constants of the impulse response $h[n]$.
b) (1p) Is the filter FIR or IIR? Explain.
c) (1p) Is the filter stable? Explain.
3. (6p, MTE2) Are the following statements true (T) or false (F)? A right answer gives +1 p , no answer 0 p , and a wrong answer -0.5 p . Answer to as many statements as you want. You do not need to explain. The total amount of points is $0-6 \mathrm{p}$.
a) One possible polyphase realization of a FIR filter $H(z)=1-0.4 z^{-1}-0.4 z^{-2}+z^{-3}$ is $H(z)=F_{0}\left(z^{2}\right)+F_{1}\left(z^{2}\right)$, where $F_{0}(z)=1-0.4 z^{-1}$ ja $F_{1}(z)=-0.4+z^{-1}$.
b) Scaling of the filter is used to suppress the signal in order to reject overflows, and at the same time signal-to-noise ratio (SNR) is improved.
c) The order of the elliptic IIR lowpass filter in Figure 1(a) is 2.
d) Matlab code plot(n , x) produces a curve in Figure 1(b), when n refers to indices $n=0 \ldots 4$ and x refers to sequence $x[n]=\{\underline{1}, 3,2,5,4\}$.
e) CD-quality audio has the interval (period) between each digital sample appr. 0.0227 ms.
f) The order of the filter in Figure 1(c) is 4.
g) Upsample a cosine sequence of 2000 Hertz so that the original sampling frequency 8 kHz is increased by double, that is with factor $L=2$. Statement: The frequency of the downsampled signal is 4 kHz .
h) A cascade (series) system of second-order systems is more sensitive to quantization of coefficients than the corresponding direct form structure.

Figure 1: Figure (a), (b), and (c) for Problem 3.
4. (6p, MTE2, final exam) There are two second-order IIR filters in Figure 2. Consider only the complex poles of the filters, when the real coefficients a and b are quantized into three bits using sign-magnitude representation. The numbers possible are thus $\{-0.75,-0.5,-0.25,0,0.25,0.5,0.75\}$.
Draw the positions of all possible complex poles of each filter, and compare them. Notice that the complex poles of a real-coefficient filter are complex conjugates $\left(p_{1}=r e^{j \omega}, p_{2}=p_{1}^{*}=r e^{-j \omega}\right)$ and $1+d_{1} z^{-1}+d_{2} z^{-2}=\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)$.

Figure 2: The filters of Problem 4.
5. (6p, MTE2, final exam) Consider a signal $x[n]$, whose amplitude spectrum is in Figure 3 in range $0 \ldots \pi$. Only the frequency band $0 \ldots \pi / 5$ is needed for the signal. The sampling frequency is 16000 Hz and it will be increased digitally up to 28000 Hz .
a) Explain briefly which components and in which order are needed in this system, which changes sampling frequency.
b) Determine the passband and stopband cut-off frequencies of the required lowpass filter so that the filter has as low order as possible. Examine the procedure in frequency domain and show all steps.

Figure 3: The spectrum of Problem 5.
6. (6p, MTE2, final exam) Choose either A or B.

6A. Essay: FFT-algorithms, especially "Decimation-in-Time" and "Decimation-in-Frequency". You do not have to derive formulas.

6B. Consider an analog transfer function $H_{a}(s)=(s+a) /\left[(s+a)^{2}+b^{2}\right]$, where coefficients a and b are real-valued. The pole-zero-plot of the filter (in s-plane) and amplitude response are as shown in Figure 4.
NOTE! You do not have to compute any z-plane transfer functions, or corresponding. Only sketching of figures is enough.
a) Sketch the amplitude response of a digital filter via impulse invariant method.
b) Sketch the amplitude response of a digital filter via bilinear transform.
c) Explain briefly, how the methods in a) and b) differ from each other.

Figure 4: Problem 6B: analog s-plane pole-zero-plot in left, and the amplitude response $|H(j \Omega)|$ in right. $\Omega=2 \pi f(\mathrm{rad} / \mathrm{s}), \omega=2 \pi\left(\Omega / \Omega_{T}\right)(\mathrm{rad})$, where Ω_{T} angular sampling frequency.

