1st mid term exam, Mon 20.10.2003 at 16-19, hall A.
It is not allowed to use any calculators or reference books. All concept papers should be returned. A formulae table is delivered in the exam.

1) (2p) What are two angles $\omega_{1,2}$ in range $[-\pi \ldots \pi]$ in radians, for which $\cos (\omega)=-\sqrt{3} / 2 \approx$ -0.866 . Hint: formulae table.
2) (4p) Are the following statements true (T) or false (F)? A right answer gives +0.5 points, no answer 0 points, and a wrong answer -0.5 points. Reply to as many statements as you want; no explanations are needed. The total point amount for this problem is, however, between $0-4$ points. Write down a similar table onto your answer paper as given below. If you want explicitely to comment on your choices, write down them separately.

$1:$		$2:$		$3:$		$4:$	$5:$	
$7:$	$8:$	$9:$	$9:$	$10:$		$11:$		$12:$

1) There exists a fundamental period T for a cont.-time signal $x(t)=\sin \left(\frac{3 \pi}{17} t\right)+\sin \left(\frac{7 \pi}{11} t+\pi / 7\right)$.
2) The fundamental period N for the sequence $x[n]=\cos \left(\frac{2 \pi}{6} n\right)+\sin \left(\frac{\pi}{4} n+\pi\right)$ is $N=48$.
3) The sampling period (interval) used in CDs is 44100 Hz .
4) Causal discrete-time systems are always also LTI systems.
5) LTI filter with the impulse response $h[n]=(1 / n) \mu[n]$, is stable.
6) Let $y[n]=x_{1}[n] \circledast x_{2}[n]$ and $v[n]=x_{1}\left[n+N_{1}\right] \circledast x_{2}\left[n+N_{2}\right]$.

Hence, $v[n]=y\left[n+\left(N_{1}+N_{2}\right)\right]$.
7) The order of the filter $y[n]+0.3 y[n-2]=x[n]-0.6 x[n-1]+0.2 x[n-2]$ is two.
8) The amplification of an all-pass-filter is 1 for each frequency: $\left|H\left(e^{j \omega}\right)\right|=1$. Consider a second order LTI systems with poles $p_{1}=0.5$ and $p_{2}=0.8$ and zeros $z_{1}=-0.5 \mathrm{ja}$ $z_{2}=-0.8$. Statement: The filter is all-pass.
9) The partial fraction expansion of the transfer function $H(z)=\frac{1-0.5 z^{-1}}{1-z^{-1}+0.24 z^{-2}}$ is $H(z)=$ $\frac{0.5}{1-0.6 z^{-1}}-\frac{0.5}{1-0.4 z^{-1}}$.
10) The transfer function $H(z)=1-z^{-1}-z^{-2}+z^{-3}$ is a linear-phase filter.
11) Two-point moving average filter is low-pass filter.
12) The Matlab command subplot can be used to plot the cosine signal into top axis in a window: $\mathrm{t}=[0: 1 / 100: 1] ; \mathrm{y}=\cos (2 * \mathrm{pi} * 10 * \mathrm{t})$; subplot $(\mathrm{t}, \mathrm{y}, 1) ;$.
3) (6p) Let us examine a cascade LTI system in Figure 1 below. The following impulse responses are known:

$$
\begin{aligned}
h_{1}[n] & =\mu[n]-\mu[n-2] \\
h[n] & =\delta[n]-\delta[n-1]-7 \delta[n-2]-7 \delta[n-3]-2 \delta[n-4]
\end{aligned}
$$

a) (3p) Compute the output of the system $h[n]$ for the input $x[n]=-2 \delta[n+1]+2 \delta[n]$.
b) (3p) Compute the impulse response $h_{2}[n]$. Is $h_{2}[n]$ causal?

Figure 1: Problem 3, $h[n]$ consists of three LTI subsystems in cascade.

Figure 2: The block diagram of Problem 4
a) Construct the difference equation (between x and y) or a set of difference equations corresponding to the filter Hint: Use temporal variable w or apply cascade connection.
b) Define the transfer function $H(z)=\frac{Y(z)}{X(z)}$.
c) Draw the zero-pole-diagram of the filter.
d) Based on the zero-pole-diagram, answer to the following questions: Of what type is the filter: lowpass / highpass / bandpass / bandstop / allpass? Is the filter stable?
e) What is the impulse response $h[n]$ in closed form?
5) (6p) It is possible to estimate the amplitude response of the filter from the pole-zero plot.
a) (4p) Connect pole-zero-plot to a corresponding amplitude response. There is one pole-zeroplot which does not fit to any amplitude response. Write down the three pairs (LETTER, number).
b) (2p) For which single figure (A-D, I-IV) does the following Matlab code refer to? How would you replace ???.
w = [0 : pi/128 : pi];
$B=\left[\begin{array}{lllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right]$;
$\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0.81\end{array}\right] ;$
zplane(B,???);

Figure 3: Problem 5, pole-zero-plots and amplitude responses. Top row from left to right A-D, bottom row from left to right I-IV.

