T-61.246 Digital Signal Processing and Filtering

UPDATED PAPER. 1st mid term exam, Mon 18th Oct 2004 at 16-19 in hall A.
You are not allowed to use any calculator nor math formula book. All papers except this one has to be returned. A table of formula is delivered.
Start a new problem from a new page. Write down the intermediate steps, too.

1) (6p) What is the (mathematical) definition for periodic signals?

It is known that the signal $x(t)=\cos (\pi t / 3+\pi / 2)+2 \cos \left(2 \pi t^{2} / 16\right)$ is not periodic. Show using the definition that the discrete-time sequence

$$
x[n]=\cos (\pi n / 3+\pi / 2)+2 \cos \left(2 \pi n^{2} / 16\right)
$$

is periodic, and find the fundamental period N_{0}.
2) (6p) Examine the following sequences, where $x[n]$ depicts the input for the LTI system, and $h[n]$ is the impulse response of the system:

$$
\begin{aligned}
& x[n]=3 \delta[n-1]-2 \delta[n-2]+\delta[n-3] \\
& h[n]=(-1)^{n-3} \mu[n+3]
\end{aligned}
$$

a) (2p) Draw the sequences $x[n]$ and $h[n]$.
b) (1p) Is the LTI filter stable? Explain.
c) (1p) Is the LTI filter causal? Explain.
d) (2p) The output sequence from the system is given by $y[n]=h[n] \circledast x[n]$. Compute $y[2004]$.
3) (9p) Examine a discrete-time system, whose transfer function is

$$
H(z)=\frac{1-0.64 z^{-2}}{1-1.4 z^{-1}+0.98 z^{-2}}
$$

a) (1p) Sketch the pole-zero plot with the unit circle.
b) (1.5p) Sketch the amplitude response. Is the filter lowpass / highpass / bandpass / bandstop / all-pass?
c) (1.5p) What is the difference equation of the system?
d) (1p) Is the filter stable? Explain.
e) (1p) Draw the flow/block diagram of the filter.
f) (1p) Is the filter FIR or IIR? Explain.
g) (1p) What are the values for the impulse response $h[n]$, when $n=0 \ldots 3$?
h) (1p) Why it can be said that the system is LTI?
4) (3p) From a pole-zero plot/diagram the amplitude response can be roughly estimated.

Connect a pole-zero plot to a corresponding amplitude response. There is one pole-zero plot, which does not fit to one amplitude response. Write down the three correct pairs (LETTER, number).
In the left column there are the pole-zero plots A..D, in the right column the amplitude responses $1 . .4$. The x -axis in amplitude responses is $0 \ldots 1$ corresponding the normalized angular frequency $0 \ldots \pi$ (frequencies $0 \ldots f_{s} / 2$).

