T-61.3010 Digital Signal Processing and Filtering

Mid term exam 2 / Final exam. Wed 7.5.2008 8-11. Hall M.
You can do MTE2 only once either 7.5. or 14.5. MTE2: Problems 1 and 2.
You can do final exam only once either 7.5. or 14.5. Final exam: Problems 2, 3, 4, 5, and 6. Begin each problem from a new page.

You can have a function calculator but not any math formula book. You will be given a course formula paper and a multichoice sheet for Problem 1 (MTE2).

1) ($10 \times 1 \mathrm{p}$, max 8 p , ONLY MTE2) Multichoice There are 1-4 correct answers, but choose one and only one. Fill in into a separate form, which will be read optically.
Correct answer +1 p , incorrect -0.5 p , no answer 0 p . You do not need to explain your choices. Reply to as many statements as you want. The maximum points of this problem is 8 and the minimum 0 .
Statements 1.1-1.4 are core of this course and straigt forward. Statements $1.5-1.10$ need probably some computation on paper.
1.1 Causal and stable LTI filter

$$
H(z)=\frac{1+2 z^{-1}+z^{-2}}{1-1.3 z^{-1}+0.4 z^{-2}}
$$

is depicted in a canonic (with respect to delays) direct form II in
(A) Figure 1(a)
(B) Figure 1(b)
(C) Figure 1(c)
(D) Figure 1(d)
1.2 Bilinear transform
(A) is bijection (one-to-one mapping), where half plane of analog s-plane is mapped to inside unit circle in z-plane
(B) one way to compute analog FIR-filter from corresponding digital filter
(C) is transform with which it is possible to shift quantization noise into a stopband of the filter
(D) is filtering stereo signal with a linear-phase filter
1.3 Window function used in digital FIR filter design

$$
w[n]=0.54+0.46 \cdot\left(\cos \left(\frac{2 \pi n}{2 M}\right)\right)
$$

(A) is ready FIR filter with normalize cut-off angular frequency $\omega_{c}=2 \pi \cdot M / N$, where N is filter order
(B) determines minimum attenuation in stopband as $20 \log _{10}(M)$ decibels
(C) is typical Butterworth window, whose mainlobe length is $\Delta_{\mathrm{ML}}=3.11 \pi / M$
(D) can be used to cut the infinite-length impulse response $h_{\text {ideal }}[n]$ into finite-length
1.4 When audio signal $x[n]$, whose sampling frequency is $f_{T}=22050 \mathrm{~Hz}$ and length about 0.40 seconds, is upsampled with factor $L=2$
(A) number of samples will be about 44100
(B) sampling period will be $T=0.40 / 22050 \mathrm{~Hz}$
(C) length of the signal will be still about 0.40 seconds with the new sampling frequency $f_{T}^{\prime}=44100 \mathrm{~Hz}$
(D) length of the signal will be about 0.80 seconds with the new sampling frequency $f_{T}^{\prime}=44100 \mathrm{~Hz}$
1.5 Examine digital IIR bandpass filter

$$
H(z)=K \cdot \frac{2-0.108 z^{-2}+2 z^{-4}}{1+1.16 z^{-2}+0.434 z^{-4}}
$$

whose maximum is reached at $\omega=\pi / 2$. Determine the scaling factor K so that the maximum of the filter will be 1 .
(A) $K \approx 0.067$
(B) $K \approx 0.50$
(C) $K \approx 0.67$
(D) $K \approx 15$
1.6 Stable analog filter $H(s)=\Omega /(s+\Omega)$, with prewarped $\Omega=k \cdot 0.5$, is changed to digital $H(z)$ using $s=$ $k \cdot\left(1-z^{-1}\right) /\left(1+z^{-1}\right)$. The digital filter will be
(A) $H(z)=1 /\left(1+2 k^{-1} z^{-1}\right)$
(B) $H(z)=(1 / 3) \cdot\left(1+z^{-1}\right) /\left(1-(1 / 3) z^{-1}\right)$
(C) $H(z)=\left(1+z^{-1}\right) /\left(1-3 z^{-1}\right)$
(D) $H(z)=\left(1-z^{-1}\right) /\left(1.5-0.5 z^{-1}\right)$
1.7 Examine the second-order IIR filter with quantization block Q and first-order error-shaping in Figure 2(a).

Let us write $w[n]$ and replace Q with noise source $e[n]$ as shown in Figure 2(b). Now you can write two difference equations, one $y[n]=\ldots$ and the other $w[n]=\ldots$.
Next, you can write down the output in frequency domain

$$
Y(z)=H_{x}(z) \cdot X(z)+H_{e}(z) \cdot E(z)
$$

where $H_{x}(z)$ is the actual filter and $H_{e}(z)$ is the filter for quantization error. These are
(A) $H_{x}(z)=\frac{1+1.8 z^{-1}+0.82 z^{-2}}{1+1.8 z^{-1}+0.82 z^{-2}}$ and $H_{e}(z)=\frac{k z^{-1}}{1+1.8 z^{-1}+0.82 z^{-2}}$
(B) $H_{x}(z)=\frac{1+1.8 z^{-1}+0.82 z^{-2}}{1-1.8 z^{-1}+0.82 z^{-2}}$ and $H_{e}(z)=\frac{1+k z^{-1}}{1-1.8 z^{-1}+0.82 z^{-2}}$
(C) $H_{x}(z)=\frac{1+1.8 z^{-1}+0.82 z^{-2}}{1-1.8 z^{-1}+0.82 z^{-2}}$ and $H_{e}(z)=\frac{1+(k-1.8) z^{-1}+0.82 z^{-2}}{1-1.8 z^{-1}+0.82 z^{-2}}$
(D) None of pairs above is not true.
1.8 Continue from 1.7. Suppose quantization error as white noise, whose spectrum $E(z)=1$. What is the best value for k, so that total noise $E_{\mathrm{TOT}}(z)$ is shifted from interesting passband.
(B) $k=-1$
(A) $k=0$
(C) $k=1$
(D) $k=1.8$
1.9 Using command $[\mathrm{B}, \mathrm{A}]=\operatorname{cheby} 2(5,30,0.25)$; you will get Chebychev II -type digital filter, whose order is $N=5$, stopband minimum attenuation 30 dB and stopband cut-off $\omega_{\text {stop }}=0.25 \pi$. The magnitude response of the filter is in
(A) Figure 3(a)
(B) Figure 3(b)
(C) Figure 3(c)
(D) Figure 3(d)
1.10 What can you do with a working piece of Matlab code below?

```
[x, fT] = wavread('mysignal.wav');
wL = 256;
M = length(x);
V = zeros(ceil(M/wL), 1);
m = 0;
for k = [1 : wL : M-wL]
    m = m + 1;
    V(m) = sum(x(k : k+wL-1).^2);
end;
```

(A) Lowpass filter the signal with cut-off wL Hz
(B) Thresholding values of vector V it is possible to find out where the signal has silent parts
(C) Compute power spectrum values
(D) You can draw spectrogram from values of V

Figure 1: Multichoice statement 1.1 structures, top row (A) and (B), bottom row (C) and (D) .

Figure 2: Multichoice statement 1.7 and 1.8, 2nd order IIR with 1st order error-feedback. Right, Q is replaced by noise source $e[n]$.

Figure 4: Problem 2A. Flow-diagram of "radix-2 DIT FFT".
2) (6p, MTE2 AND FINAL EXAM) Choose either 2A or 2B.

2A) FFT algorithms. In addition to common properties you can also use an example of "radix-2 DIT FFT" algorithm, whose flow diagram is given in Figure 4 for 4 points and $r=1,2$, and $l_{r}=0, \ldots, 2^{r-1}-1$. Check out the butterfly equations and W_{N} from formula paper. Compute transform with intermediate steps for sequence $x[n]=$ $2 \delta[n]+4 \delta[n-1]-\delta[n-2]+5 \delta[n-3]$.

2B) Examine stable and causal lowpass filter $H(z)$, whose passband ends at 3 kHz and whose frequency response is 10 kHz . Amplitude response is given in Figure 5(a) and first values of impulse response $h[n]$ in Figure 5(b).
a) Upsample filter with factor $L=3$. Sketch both the new amplitude response $H^{\prime}(z)=H\left(z^{3}\right)$ and impulse response $h^{\prime}[n]=h[n / 3]$ for first 10 values.
b) Finally, you'd like to have a lowpass filter with the same cut-off but with 30 kHz sampling frequency. What do you have to do? Sketch both the new amplitude response $\left|H^{\prime \prime}\left(e^{j \omega}\right)\right|$ and impulse response $h^{\prime \prime}[n]=h[n / 3]$ for first 10 values afterwards.

Figure 5: Problem 2B. Left, amplitude response. Right, impulse response.
3) (6 p , ONLY FINAL EXAM) Examine cascade (series) of two LTI-systems $h[n]=h_{1}[n] \circledast h_{2}[n]$, where $h_{1}[n]=\delta[n]-0.9 \delta[n-1]$ and $h_{2}[n]=\delta[n]+0.81 \delta[n-2]$.
a) What is the impulse response $h[n]$ of the total system?
b) Write down the transfer function $H(z)=H_{1}(z) \cdot H_{2}(z)$.
c) Sketch the pole-zero-plot. (Hint: you can combine pole-zero-plots of $H_{1}(z)$ and $H_{2}(z)$ because they are terms of the product $H(z)$.)
d) Sketch the amplitude response of the filter. Give reasons why the maximum amplification is at $\omega=\pi$.
4) (6p, ONLY FINAL EXAM) Examine spectrum $X(j \Omega)$ of analog signal $x(t)$ in Figure 6 .
a) What is the most important thing in Shannon's sampling theorem?
b) If the signal is sampled with $f_{T}=10 \mathrm{kHz}$, sketch the spectrum $X\left(e^{j \omega}\right)$ of sampled sequence.

Figure 6: Problem 4. Spectrum $X(j \Omega)$ of analog signaln $x(t)$.
5) (6p, ONLY FINAL EXAM) Consider a stable and causeal LTI-filter

$$
y[n]=x[n]-4 a x[n-1]+9 a^{2} x[n-2]+1.2 y[n-1]-0.72 y[n-2]
$$

whose coefficient a is real value determined later.
a) Draw the block diagram of the filter in a canonic (with respect to delays) direct form II structure.
b) Determine $H(z)$.
c) Examine frequency properties of the filter as a function of a using pole-zero-plot, when $a \geq 0$.
6) (6p, ONLY FINAL EXAM) Digital IIR filter design.

