T-61.3010 Digitaalinen signaalinkäsittely ja suodatus

Mid term exam 1, Fri12.3.2010 at 13-16, Hall A.

You are allowed to do MTE1 only once either 6.3. or 12.3.

You are not allowed to use any calculators or math reference books. A list of formulas is delivered in the exam. A special form is delivered for Problem 1.

Return a special form and the other answer paper separately. Both ones have to have at least student number and name written on. Problem paper and the formulas you may keep.

Problem 3 is a course feedback which is open from Sat 6-March to Mon 22-March 2010. However, questionnaire is only in Finnish, so the feedback from non-Finnish students is collected in our non-Finnish group meetings.

1) (0-9 p) Multichoice statements. There are 1-4 correct answers, but choose one and only one. Fill in into a separate form, which will be read optically. BLACKEN THE BOX of your choice.

Correct answer +1 p, incorrect -0.5 p, no answer 0 p. You do not need to explain your choices. Reply to as many statements as you want. The maximum points of this problem is 9 and the minimum 0.

- 1.1 Consider a sequence $x[n] = A_1 \cos(\omega_1 n + \theta_1) + A_2 \cos(\omega_2 n + \theta_2) + A_3 \cos(\omega_3 n + \theta_3)$, where fundamental periods of each subsequence are $N_1 = 6$, $N_2 = 8$ and $N_3 = 10$, and A_i are non-zero. What can be said about periodicity of sequence x[n]?
 - (A) Fundamental period N_0 exists if and only if all phases are zero: $\theta_1 = 0, \theta_2 = 0, \theta_3 = 0$
 - (B) Fundamental period is greatest common divisor/factor (GCD), that is, $N_0 = 2$
 - (C) Fundamental period is least common multiple (LCM), that is, $N_0 = 120$
 - (D) Fundamental period is product of periods of subsequencies, that is, $N_0 = 480$
- 1.2 Compute linear convolution $y[n] = h[n] \circledast x[n]$ of sequences $x[n] = \delta[n] + 2\delta[n-1] + \delta[n-2] = \{\underline{1}, 2, 1\}$ and $h[n] = \delta[n] + 2\delta[n-2] = \{\underline{1}, 0, -2\}$. where underline shows the origin.
 - (A) Length of y[n] is 5
 - (B) y[n] = 0, when $n \le 0$
 - (C) y[n] = 0, when $n \ge 3$
 - **(D)** y[1] = 0
- 1.3 Two LTI systems $h_1[n]$ and $h_2[n]$ in parallel connection form the total impulse response h[n] of the system. We know that $h_2[n] = \{1, 2, -1\}$ and $h[n] = \{-2, -5, 1, 3, -1\}$, where underline shows the origin. Hence, the unknown $h_1[n]$ is of form
 - (A) $h_1[n] = a \cdot \delta[n+2] + b \cdot \delta[n+1] + c \cdot \delta[n] + d \cdot \delta[n-1] + e \cdot \delta[n-2]$
 - **(B)** $h_1[n] = b \cdot \delta[n+1] + c \cdot \delta[n] + d \cdot \delta[n-1]$
 - (C) $h_1[n] = d \cdot \delta[n-1] + e \cdot \delta[n-2] + f \cdot \delta[n-3]$
 - (D) $h_1[n]$ is a causal filter

where $\{a, b, c, d, e, f\} \in \mathbb{R}$ and non-zero.

- 1.4 Two-point moving average filter:
 - (A) It is FIR
 - (B) It can have linear phase response
 - (C) The order of the filter is 1
 - (D) The structure of the filter contains at least one feedback loop
- 1.5 We know a band-limited spectrum $|X(j\Omega)|$ of an analog real-valued signal x(t), see Figure 1(a). The signal is sampled with sampling frequency $f_T = 10000$ Hz.

(A) The spectrum $|X(e^{j\omega})|$ of the sampled sequence in range $[0, f_T/2]$ is in Figure 2(a). (y-axis values proportional.)

(B) The spectrum $|X(e^{j\omega})|$ of the sampled sequence in range $[0, f_T/2]$ is in Figure 2(b). (y-axis values proportional.)

(C) The obtained sequence x[n] is a sinusoidal of form $x[n] = \cos(\omega_0 n + \theta)$, where $\omega_0 = 2\pi (f_0/f_T)$ is normalized fundamental angular frequency

(D) All those frequency components, whose period T_i is longer than $2/f_T$ seconds, alias to lower frequencies in range $[0, f_T/2]$ Hz of the digital spectrum $|X(e^{j\omega})|$, and therefore cannot be recovered back in the ideal D/A reconstruction

- 1.6 Fourth order LTI filter has poles at $p_1 = a$, $p_2 = -a$, $p_3 = bj$, and $p_4 = -bj$, where a and b are real-valued and 0 < a < b < 1. All zeros are in the origin. Which of the following can be the magnitude response of the filter?
 - **(A)** Figure 3(a)
 - **(B)** Figure 3(b)
 - **(C)** Figure 3(c)
 - **(D)** Figure 3(d)
- $1.7\,$ The impulse response of a LTI filter is

$$h[n] = 4 \cdot (-0.8)^n \mu[n] - 3 \cdot (-0.6)^n \mu[n]$$

- (A) Order of the filter is 1
- (B) Zeros are at $z_1 = 0.8$ and $z_2 = 0.6$
- (\mathbf{C}) It has a linear phase response
- (D) It is a highpass filter

1.8 Discrete Fourier transform (DFT) of a sequence $x_1[n] = \{\underline{2}, 1, 2, 1\}$ is

$$X_1[k] = \sum_{n=0}^{3} x_1[n] W_N^{nk} = \{\underline{6}, 0, 2, 0\}$$

and correspondingly for $x_2[n]$ there are $x_2[n] = \{\underline{1}, 2, 3, 4\}$ and $X_2[k] = \{\underline{10}, -2+2j, -2, -2-2j\}$. Compute DFT $X_3[k]$ of a sequence $x_3[n] = 2x_1[n] - x_2[n]$. (DFT can be found in formula table.)

	k =	0	1	2	3
(A)	$X_3[k] =$	2	2-2j	6	2+2j
(B)	$X_3[k] =$	3	0	-1	2j
(C)	$X_3[k] =$	10	2-3j	4	3-2j
(D)	$X_3[k] =$	22	-2 + 2j	2	-2 - 2j

1.9 A simple lowpass filter is given with the frequency response

$$H_{LP}(e^{j\omega}) = \frac{1 + e^{-j\omega} + e^{-j2\omega} + e^{-j3\omega}}{4}$$

whose magnitude response is in Figure 4(a). Using a frequency shift receive easily a simple highpass filter, whose magnitude response is in Figure 4(b). Compute the impulse response for the highpass filter. Hint: formula table.

(A) $h_{HP}[n] = 4 \cdot (\delta[n] + \delta[n-1] - \delta[n-2] - \delta[n-3])$

- **(B)** $h_{HP}[n] = (-0.25) \cdot (\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3])$
- (C) $h_{HP}[n] = 0.25 \cdot (\delta[n] \delta[n-1] + \delta[n-2] \delta[n-3])$
- **(D)** $h_{HP}[n] = e^{-j1.5\omega n} \cdot (\cos(0.5\omega n) + \cos(1.5\omega n))$

1.10 In Matlab we are computing output of a LTI system as follows:

```
x = [9 8 9 9 8 1 2 3 2 2 1 9 8 7 9 8]; % input
y = zeros(size(x)); % initialize output with zeros
for k = [2 : length(x)-1]
y(k) = x(k) - x(k+1) - 1.1*y(k-1);
end;
```

What can be said about properties or action of the corresponding LTI system?

(A) It is FIR

- (B) Output values y grow to infinitely large so that the program stops
- (C) It is not a causal filter
- (D) Group delay is $\tau(\omega) = -0.5$

Figure 1: Statement 1.5: (a) Spectrum $|X(j\Omega)|$ of analog signal x(t), (b) empty axis $f \in [0, f_T/2]$ for sketching.

Figure 4: Statement 1.9: (a) Original lowpass filter $|H_{LP}(e^{j\omega})|$, (b) Desired highpass filter $|H_{HP}(e^{j\omega})|$.

2) (6 p) Consider a discrete-time linear and time-invariant system, whose transfer function is

$$H(z) = \frac{1}{1+0.2z^{-1}} + \frac{1+0.2z^{-1}}{1-0.8z^{-1}}, \quad |z| > 0.8$$

Examine the filter and its behavior with tools given in the course. Write down the facts as clearly as possible. 3) (1 p) Course feedback in non-Finnish group meetings.