T-61.3010 Digital Signal Processing and Filtering

Mid term exam 1, Fri 13.3.2009 at 9-12, hall A.

You are allowed to do MTE1 only once either 7.3. or 13.3.

You are not allowed to use any calculators or math reference books. A list of formulas is delivered in the exam. A special form is delivered for Problem 1.

Return a special form and the other answer paper separately. Both ones have to have at least student number and name written on. Problem paper and the formulas you may keep.

Problem 3 is a course feedback which is open from Sat 7-March to Mon 23-March 2009.

1) (0-12 p) Multichoice statements. There are 1-4 correct answers, but choose one and only one. Fill in into a separate form, which will be read optically.

Correct answer +1 p, incorrect -0.5 p, no answer 0 p. You do not need to explain your choices. Reply to as many statements as you want. The maximum points of this problem is 12 and the minimum 0.

- 1.1 Consider a sequence $x[n] = x_1[n] + x_2[n] + x_3[n]$, where fundamental periods of subsequences are $N_1 = 4$, $N_2 = 8$ and $N_3 = 20$. What can be said about period of sequence x[n]?
 - (A) There is no fundamental period N_0
 - (B) Fundamental period is $N_0 = 20$
 - (C) Fundamental normalized angular frequency is $\omega_0 = 2\pi/N_0 = \pi/20$
 - (D) Sequence is periodic with period $N = 4 \cdot 8 \cdot 20 = 640$
- 1.2 Compute linear convolution $y[n] = h[n] \circledast x[n]$ of sequences $x[n] = \delta[n+1] + \delta[n] + 2\delta[n-1] = \{1, \underline{1}, 2\}$ and $h[n] = \delta[n+1] \delta[n] = \{1, -1\}$ where underline shows the origin.
 - (A) y[n] = 0, when n < 0
 - (B) Left-most non-zero value of sequence y[n] is at n = 1
 - (C) y[0] = -1
 - (D) y[0] = 1
- 1.3 Compute deconvolution, when $y[n] = h[n] \circledast x[n]$, and we have an impulse response $h[n] = \{1, \underline{-2}\}$ and $y[n] = \{2, 0, 0, 0, -d\}$, where underline shows the origin. Hence, the input x[n] is of form
 - (A) $x[n] = 2 \cdot \delta[n+1] d \cdot \delta[n-3]$
 - (B) $x[n] = 2 \cdot \delta[n+1] + a \cdot \delta[n] + b \cdot \delta[n-1] + c \cdot \delta[n-2] + d \cdot \delta[n-3]$ (C) $x[n] = 2 \cdot \delta[n-1] + c \cdot \delta[n-5]$ (D) $x[n] = 2 \cdot \delta[n-1] + a \cdot \delta[n-2] + b \cdot \delta[n-3] + c \cdot \delta[n-4]$
 - where $\{a, b, c, d\} \in \mathbb{R}$ and non-zero.

1.4 LTI system is defined by the difference equation y[n] - 0.1y[n-1] + 0.2y[n-2] = 0.5x[n] + 0.5x[n-2]

- (A) Corresponding block diagram is in Figure 1(a)
- (B) Corresponding block diagram is in Figure 1(b)
- (C) Filter is of FIR type
- (D) Filter is not causal
- 1.5 Magnitude response of the filter is

$$|H(e^{j\omega})| = K \cdot \frac{|1 - 0.3 e^{-j\omega}| \cdot |1 + e^{-j\omega}|}{|1 - 0.9j e^{-j\omega}| \cdot |1 + 0.9j e^{-j\omega}|}$$

- (A) $|H(e^{j\omega})| = 0$, when $\omega = 0$
- (B) $|H(e^{j\omega})| \to \infty$, when $\omega \to 0.9$
- (C) Impulse response h[n] is symmetric
- (D) If the sampling frequency is $f_T = 44100$ Hz, then the maximum amplification is reached at the frequency $f \approx 11$ kHz
- 1.6 LTI system is defined by the difference equation y[n] = x[n] 1.8x[n-1] + 0.82x[n-2] + 0.2y[n-1] + 0.15y[n-2]. Magnitude response $|H(e^{j\omega})|$ scaled between $0 \dots 1$ is
 - (A) in Figure 2(a)
 - (B) in Figure 2(b)
 - (C) in Figure 2(c)
 - (D) in Figure 2(d)

- 1.7 Consider a stable digital sixth order LTI filter, whose coefficients of impulse response h[n] are real-valued. (A) Frequency response $H(e^{j\omega})$ is periodic with 6π : $H(e^{j(\omega_0)}) = H(e^{j(6\pi+\omega_0)})$ for all ω_0
 - (B) Phase response $\angle H(e^{j\omega})$ is symmetric around y-axis: $\angle H(e^{j(-\omega_0)}) = \angle H(e^{j(+\omega_0)})$ for all ω_0
 - (C) Group delay $\tau(\omega) = 6$ for all ω_0
 - (\mathbf{D}) all six poles in the pole-zero-plot are always on the unit circle
- 1.8 See the spectrum $|X(j\Omega)|$ of a continuous-time real signal in top row of Figure 3. Sample the signal with sampling frequency $f_s = 10$ kHz. The spectrum of the sequence x[n] in bottom row of Figure 3 is
 - (A) (a)

1

- (B) (b)
- (C) (c)
- (D) (d)
- 1.9 There is a screen shot from Audacity software in Figure 4. An audio signal is analysed at the interval $20.40 \dots 21.30$ s. The sampling frequency is $f_T = 22050$ Hz. In addition there is a spectrum estimate of the chosen signal part of 50 ms.
 - (A) It is said "I love DSP" in the audio sample
 - (B) The audio sample is an example of broadband noise
 - (C) The chosen audio part is not periodic in the strict mathematical sense $(x(t) \equiv x(t+T))$ but "almost periodic" ("quasi-periodic")
 - (D) If it is known that the audio is originated from a piano, eight neighbour keys are pressed at the same as shown in the spectrum
- 1.10 Assume a sequence $x[n] = \delta[n-K] + \delta[n-K-1]$, where $K \in \mathbb{Z}_+$. Compute a linear convolution

$$y[n] = x[n] \circledast (x[n] \circledast (x[n] \circledast (x[n] \circledast (x[n] \circledast x[n]))))$$

- (A) The length of the sequence y[n] is $L_y(K) = 6K 5$
- **(B)** y[n] = 0, when $n \ge 7$
- (C) The sum $\sum_{n=-\infty}^{\infty} y[n] = 64$
- (D) None of above is true
- 1.11 Impulse response of the filter is $h[n] = \sum_{k=-\infty}^{\infty} (2\delta[n-2k] 2\delta[n-2k-1])$
 - (A) Pole-zero-plot is in Figure 5
 - (B) Transfer function is $H(z) = \frac{2}{1-z^{-1}}$
 - (C) Filter is not stable
 - (D) Filter is of lowpass type
- 1.12 Consider a LTI filter $H(z) = 1 + 0.1z^{-10}$
 - (A) Pole-zero-plot of the filter is in Figure 6(a)
 - (B) Magnitude response $|H(e^{j\omega})|$ of the filter is in Figure 6(b)
 - (C) The length of impulse response h[n] is 10
 - (D) Group delay $\tau(\omega)$ of the filter is constant

Figure 1: Problem 1.4, vaihtoehdot (A) ja (B)

Figure 5: Problem 1.11, option (A) .

Figure 6: Problem 1.12, options (\mathbf{B}) and (\mathbf{D}) .

- 2) (6 p) In the first part of this course we have examined inputs x[n], digital LTI systems h[n] which process them and outputs y[n]. These can be processed both in time- and frequency-domain.
 Write down an essay about "filtering signals with digital LTI filters".
- 3) (1 p) Course feedback. Questionnaire http://www.cis.hut.fi/Opinnot/T-61.3010/VK1_K2009/kyselyVK1_en. shtml is open till 23-Mar 2009.