T-61.3010 Digital Signal Processing and Filtering

Mid term exam 1, Fri 13.3.2009 at 9-12, hall A.

You are allowed to do MTE1 only once either 7.3. or 13.3.

You are not allowed to use any calculators or math reference books. A list of formulas is delivered in the exam. A specia form is delivered for Problem 1
Return a special form and the other answer paper separately. Both ones have to have at least student number and name written on. Problem paper and the formulas you may keep.
Problem 3 is a course feedback which is open from Sat 7-March to Mon 23-March 2009

1) ($0-12 \mathrm{p}$) Multichoice statements. There are 1-4 correct answers, but choose one and only one. Fill in into a separate form, which will be read optically.
Correct answer +1 p , incorrect -0.5 p , no answer 0 p . You do not need to explain your choices. Reply to as many statements as you want. The maximum points of this problem is 12 and the minimum 0 .
1.1 Consider a sequence $x[n]=x_{1}[n]+x_{2}[n]+x_{3}[n]$, where fundamental periods of subsequences are $N_{1}=4$ $N_{2}=8$ and $N_{3}=20$. What can be said about period of sequence $x[n]$?
(A) There is no fundamental period N_{0}
(B) Fundamental period is $N_{0}=20$
(C) Fundamental normalized angular frequency is $\omega_{0}=2 \pi / N_{0}=\pi / 20$
(D) Sequence is periodic with period $N=4 \cdot 8 \cdot 20=640$
1.2 Compute linear convolution $y[n]=h[n] \circledast x[n]$ of sequences $x[n]=\delta[n+1]+\delta[n]+2 \delta[n-1]=\{1, \underline{1}, 2\}$ and $h[n]=\delta[n+1]-\delta[n]=\{1, \underline{-1}\}$ where underline shows the origin
(A) $y[n]=0$, when $n<0$
(B) Left-most non-zero value of sequence $y[n]$ is at $n=1$
(C) $y[0]=-1$
(D) $y[0]=1$
1.3 Compute deconvolution, when $y[n]=h[n] \circledast x[n]$, and we have an impulse response $h[n]=\{1,-2\}$ and $y[n]=\{\underline{2}, 0,0,0,-d\}$, where underline shows the origin. Hence, the input $x[n]$ is of form
(A) $x[n]=2 \cdot \delta[n+1]-d \cdot \delta[n-3]$
(B) $x[n]=2 \cdot \delta[n+1]+a \cdot \delta[n]+b \cdot \delta[n-1]+c \cdot \delta[n-2]+d \cdot \delta[n-3]$
(C) $x[n]=2 \cdot \delta[n-1]+c \cdot \delta[n-5]$
(D) $x[n]=2 \cdot \delta[n-1]+a \cdot \delta[n-2]+b \cdot \delta[n-3]+c \cdot \delta[n-4]$
where $\{a, b, c, d\} \in \mathbb{R}$ and non-zero.
1.4 LTI system is defined by the difference equation $y[n]-0.1 y[n-1]+0.2 y[n-2]=0.5 x[n]+0.5 x[n-2]$
(A) Corresponding block diagram is in Figure 1(a)
(B) Corresponding block diagram is in Figure 1(b)
(C) Filter is of FIR type
(D) Filter is not causal
1.5 Magnitude response of the filter is

$$
\left|H\left(e^{j \omega}\right)\right|=K \cdot \frac{\left|1-0.3 e^{-j \omega}\right| \cdot\left|1+e^{-j \omega}\right|}{\left|1-0.9 j e^{-j \omega}\right| \cdot\left|1+0.9 j e^{-j \omega}\right|}
$$

(A) $\left|H\left(e^{j \omega}\right)\right|=0$, when $\omega=0$
(B) $\left|H\left(e^{j \omega}\right)\right| \rightarrow \infty$, when $\omega \rightarrow 0.9$
(C) Impulse response $h[n]$ is symmetric
(D) If the sampling frequency is $f_{T}=44100 \mathrm{~Hz}$, then the maximum amplification is reached at the frequency $f \approx 11 \mathrm{kHz}$
1.6 LTI system is defined by the difference equation $y[n]=x[n]-1.8 x[n-1]+0.82 x[n-2]+0.2 y[n-1]+0.15 y[n-2]$. Magnitude response $\left|H\left(e^{j \omega}\right)\right|$ scaled between $0 \ldots 1$ is
(A) in Figure 2(a)
(B) in Figure 2(b)
(C) in Figure 2(c)
(D) in Figure 2(d)

7 Consider a stable digital sixth order LTI filter, whose coefficients of impulse response $h[n]$ are real-valued.
(A) Frequency response $H\left(e^{j \omega}\right)$ is periodic with $6 \pi: H\left(e^{j\left(\omega_{0}\right)}\right)=H\left(e^{j\left(6 \pi+\omega_{0}\right)}\right)$ for all ω_{0}
(B) Phase response $\angle H\left(e^{j \omega}\right)$ is symmetric around y-axis: $\angle H\left(e^{j\left(-\omega_{0}\right)}\right)=\angle H\left(e^{j\left(+\omega_{0}\right)}\right)$ for all ω_{0}
(C) Group delay $\tau(\omega)=6$ for all ω_{0}
(D) all six poles in the pole-zero-plot are always on the unit circle
1.8 See the spectrum $|X(j \Omega)|$ of a continuous-time real signal in top row of Figure 3. Sample the signal with sampling frequency $f_{s}=10 \mathrm{kHz}$. The spectrum of the sequence $x[n]$ in bottom row of Figure 3 is
(A) (a)
B) (b)
(C) (c)
(D) (d)
1.9 There is a screenshot from Audacity software in Figure 4. An audio signal is analysed at the interval $20.40 \ldots 21.30$ s. The sampling frequency is $f_{T}=22050 \mathrm{~Hz}$. In addition there is a spectrum estimate of the chosen signal part of 50 ms .
(A) It is said "I love DSP" in the audio sample
(B) The audio sample is an example of broadband noise
(C) The chosen audio part is not periodic in the strict mathematical sense $(x(t) \equiv x(t+T))$ but "almost periodic" ("quasi-periodic")
(D) If it is known that the audio is originated from a piano, eight neighbour keys are pressed at the same as shown in the spectrum
1.10 Assume a sequence $x[n]=\delta[n-K]+\delta[n-K-1]$, where $K \in \mathbb{Z}_{+}$. Compute a linear convolution

$$
y[n]=x[n] \circledast(x[n] \circledast(x[n] \circledast(x[n] \circledast(x[n] \circledast x[n]))))
$$

(A) The length of the sequence $y[n]$ is $L_{y}(K)=6 K-5$
(B) $y[n]=0$, when $n \geq 7$
(C) The sum $\sum_{n=-\infty}^{\infty} y[n]=64$
(D) None of above is true
1.11 Impulse response of the filter is $h[n]=\sum_{k=-\infty}^{\infty}(2 \delta[n-2 k]-2 \delta[n-2 k-1])$
(A) Pole-zero-plot is in Figure 5
(B) Transfer function is $H(z)=\frac{2}{1-z^{-1}}$
(C) Filter is not stable
(D) Filter is of lowpass type
1.12 Consider a LTI filter $H(z)=1+0.1 z^{-10}$
(A) Pole-zero-plot of the filter is in Figure 6(a)
(B) Magnitude response $\left|H\left(e^{j \omega}\right)\right|$ of the filter is in Figure 6(b)
(C) The length of impulse response $h[n]$ is 10
(D) Group delay $\tau(\omega)$ of the filter is constant

Figure 1: Problem 1.4, vaihtoehdot (A) ja (B)

Figure 2: Problem 1.6, options (A) , (B) , (C) , (D)
. $|X(\mathrm{j} \Omega)|$

$$
\text { Figure 3: Problemn } 1.8 \text { kuvia. Top row: continuous } X(j \Omega) \text {, bottom row: options (A), (B), (C) }{ }^{\pi} \text { (D) }
$$

Figure 4: Problem 1.9, screenshot from Audacity

Figure 5: Problem 1.11, option (A)

Figure 6: Problem 1.12, options (B) and (D)
2) (6 p) In the first part of this course we have examined inputs $x[n]$, digital LTI systems $h[n]$ which process them and outputs $y[n]$. These can be processed both in time- and frequency-domain.
Write down an essay about "filtering signals with digital LTI filters".
3) (1 p) Course feedback. Questionnaire http://www.cis.hut.fi/Opinnot/T-61.3010/vK1_K2009/kyselyVK1_en shtml is open till 23 -Mar 2009

