T-61.3010 Digital Signal Processing and Filtering

Mid term exam 1, Sat 6.3.2010 at 10-13, main building.

You are allowed to do MTE1 only once either 7.3. or 13.3.

You are not allowed to use any calculators or math reference books. A list of formulas is delivered in the exam. A special form is delivered for Problem 1.

Return a special form and the other answer paper separately. Both ones have to have at least student number and name written on. Problem paper and the formulas you may keep.

Problem 3 is a course feedback which is open from Sat 6-March to Mon 22-March 2010.

1) ($0-9 \mathrm{p}$) Multichoice statements. There are $1-4$ correct answers, but choose one and only one. Fill in into a separate form, which will be read optically.
Correct answer +1 p , incorrect -0.5 p , no answer 0 p . You do not need to explain your choices. Reply to as many statements as you want. The maximum points of this problem is 9 and the minimum 0 .
1.1 Consider a sequence $x[n]=A_{1} \cos \left(\omega_{1} n+\theta_{1}\right)+A_{2} \cos \left(\omega_{2} n+\theta_{2}\right)+A_{3} \cos \left(\omega_{3} n+\theta_{3}\right)$, where fundamental periods of each subsequence are $N_{1}=5, N_{2}=8$ and $N_{3}=10$, and A_{i} are non-zero. What can be said about periodicity of sequence $x[n]$?
(A) Fundamental period N_{0} exists if and only if all phases are zero: $\theta_{1}=0, \theta_{2}=0, \theta_{3}=0$
(B) Fundamental period N_{0} exists if and only if all coefficients A_{i} are equal
(C) Fundamental period $N_{0}=40$
(D) Fundamental period $N_{0}=400$
1.2 Compute linear convolution $y[n]=h[n] \circledast x[n]$ of sequences $x[n]=\delta[n]+2 \delta[n-1]+\delta[n-2]=\{\underline{1}, 2,1\}$ and $h[n]=\delta[n]-2 \delta[n-1]=\{\underline{1},-2\}$. where underline shows the origin.
(A) Length of $y[n]$ is 5
(B) $y[n]=0$, kun $n \leq 0$
(C) $y[1]=-4$
(D) $y[1]=0$
1.3 Two LTI systems $h_{1}[n]$ and $h_{2}[n]$ in cascade (serial) form the total impulse response $h[n]$ of the system. We know that $h_{2}[n]=\{1, \underline{2},-1\}$ and $h[n]=\{-2,-5, \underline{1}, 3,-1\}$, where underline shows the origin. Hence, the unknown $h_{1}[n]$ is of form
(A) $h_{1}[n]=a \cdot \delta[n+2]+b \cdot \delta[n+1]+c \cdot \delta[n]+d \cdot \delta[n-1]+e \cdot \delta[n-2]$
(B) $h_{1}[n]=b \cdot \delta[n+1]+c \cdot \delta[n]+d \cdot \delta[n-1]$
(C) $h_{1}[n]=d \cdot \delta[n-1]+e \cdot \delta[n-2]+f \cdot \delta[n-3]$
(D) $h_{1}[n]$ is a causal filter
where $\{a, b, c, d, e, f\} \in \mathbb{R}$ and non-zero.
1.4 Impulse response of a LTI system is $h[n]=\sum_{k=0}^{\infty}(-1)^{k} \delta[n-3 k]$
(A) The length of the impulse response is infinite
(B) Filter is not stable
(C) Filter is not causal
(D) Corresponding difference equation is $y[n]=x[n]-y[n-3]$
1.5 Based on properties of discrete systems, what can be said about the system in Figure 1?
(A) It is a FIR filter
(B) It is a linear and time-invariant system
(C) It is a stable filter
(D) It is a causal filter
1.6 We know a band-limited spectrum $|X(j \Omega)|$ of an analog real-valued signal $x(t)$, see Figure 2(a). The signal is sampled with sampling frequency $f_{T}=10000 \mathrm{~Hz}$.
(A) The spectrum $\left|X\left(e^{j \omega}\right)\right|$ of the sampled sequence in range $\left[0, f_{T} / 2\right]$ is in Figure $3(\mathrm{a})$. (y-axis values propotional.)
(A) The spectrum $\left|X\left(e^{j \omega}\right)\right|$ of the sampled sequence in range $\left[0, f_{T} / 2\right]$ is in Figure $3(\mathrm{~b})$. (y -axis values propotional.)
(C) The obtained sequence $x[n]$ is a sinusoidal of form $x[n]=\cos \left(\omega_{0} n+\theta\right)$, where $\omega_{0}=2 \pi\left(f_{0} / f_{T}\right)$ is normalized fundamental angular frequency
(D) All those frequency components, whose period T_{i} is shorter than $2 / f_{T}$ seconds, fold (alias) to lower frequency in range $\left[0, f_{T} / 2\right] \mathrm{Hz}$ of the digital spectrum $\left|X\left(e^{j \omega}\right)\right|$
1.7 The transfer function of the filter is

$$
H(z)=\frac{1+(0.2-0.4 j) z^{-1}}{1-0.8 z^{-1}} \cdot \frac{1+(0.2+0.4 j) z^{-1}}{1+0.9 z^{-1}} \cdot \frac{1}{1-0.7 z^{-1}}, \quad|z|>0.9
$$

(A) The pole-zero diagram is in Figure 4(a)
(B) The magnitude response is in Figure 4(b)
(C) The order of the filter is 5
(D) The filter has a linear phase response
1.8 Discrete Fourier transform (DFT) of a sequence $x_{1}[n]=\{\underline{1}, 2,2,1\}$ is

$$
X_{1}[k]=\sum_{n=0}^{3} x_{1}[n] W_{N}^{n k}=\{\underline{6},-1-j, 0,-1+j\}
$$

and correspondingly for $x_{2}[n]$ there are $x_{2}[n]=\{\underline{1}, 1,0,0\}$ and $X_{2}[k]=\{\underline{2}, 1-j, 0,1+j\}$. Compute DFT $X_{3}[k]$ of a sequence $x_{3}[n]=x_{1}[n]+2 x_{2}[n]$. (DFT can be found in formula table.)

	$k=$	0	1	2	3
(\mathbf{A})	$X_{3}[k]=$	10	$1-3 j$	$2 j$	$2+2 j$
(\mathbf{B})	$X_{3}[k]=$	10	$2-2 j$	3	$2+2 j$
(C)	$X_{3}[k]=$	10	$1-3 j$	0	$1+3 j$
(D)	$X_{3}[k]=$	10	$3-j$	1	$-1+3 j$

1.9 Consider a LTI filter whose transfer function is

$$
H(z)=1+z^{-8}
$$

(A) It is a comb filter
(B) Zeros of the filter are at $d_{1}=+j$ and $d_{2}=-j$
(C) The length of impulse response $h[n]$ is 8
(D) The group delay is $\tau(\omega)=8$
1.10 Read a file into Matlab with command [x, fT] = wavread('kiisseli.wav'); There is an audio signal $x[n]$ with sampling frequency $f_{T}=22050 \mathrm{~Hz}$. It is fed into a LTI system with impulse response

$$
h[n]=\sum_{k=0}^{9} \frac{10-k}{50} \cdot \delta[n-k]
$$

and an output $y[n]$ is obtained with command $\mathrm{y}=\operatorname{conv}(\mathrm{h}, \mathrm{x})$;
(A) The filter can filter out noise at 50 Hz
(B) The filter produces audible "echo effect"
(C) It is a linear-phase filter, and therefore there is no phase distortion
(D) None of above holds

Figure 1: Statement 1.5: Flow diagram of the filter.

Figure 2: Statement 1.6: (a) Spectrum $|X(j \Omega)|$ of analog signal $x(t)$, (b) empty axis $f \in\left[0, f_{T} / 2\right]$ for sketching.

Figure 3: Statement 1.6: (a) option (A) , (b) option (B)

Figure 4: Statement 1.7: (a) option (A) , (b) option (B) .
2) (6 p) Consider a discrete-time linear and time-invariant system, whose impulse response is

$$
h[n]=4 \cdot(-0.8)^{n} \mu[n]-3 \cdot(-0.6)^{n} \mu[n]
$$

Examine the filter and its behavior with tools given in the course. Write down the facts as clearly as possible.
3) (1 p) Course feedback. Questionnaire http://www.cis.hut.fi/Opinnot/T-61.3010/VK1_K2010/kyselyVK1_en. shtml is open till 22-Mar 2010.

