T-61.3010 Digital Signal Processing and Filtering

Mid term exam 1, Sat 7.3.2009 at 10-13, main building.

You are allowed to do MTE1 only once either 7.3. or 13.3.

You are not allowed to use any calculators or math reference books. A list of formulas is delivered in the exam. A specia form is delivered for Problem 1.
Return a special form and the other answer paper separately. Both ones have to have at least student number and name written on. Problem paper and the formulas you may keep.
Problem 3 is a course feedback which is open from Sat 7-March to Mon 23-March 2009

1) ($0-12 \mathrm{p}$) Multichoice statements. There are 1-4 correct answers, but choose one and only one. Fill in into a separate form, which will be read optically.
Correct answer +1 p , incorrect -0.5 p , no answer 0 p . You do not need to explain your choices. Reply to as many statements as you want. The maximum points of this problem is 12 and the minimum 0 .
1.1 Consider a sequence $x[n]=x_{1}[n]+x_{2}[n]+x_{3}[n]$, where fundamental periods of subsequences are $N_{1}=8$ $N_{2}=10$ and $N_{3}=20$. What can be said about period of sequence $x[n]$?
(A) There is no fundamental period N_{0}
(B) Fundamental period is $N_{0}=2$
(C) Fundamental normalized angular frequency is $\omega_{0}=2 \pi / N_{0}=\pi / 20$
(D) Sequence is periodic with period $N=8 \cdot 10 \cdot 20=1600$
1.2 Compute linear convolution $y[n]=h[n] \circledast x[n]$ of sequences $x[n]=\delta[n+2]+\delta[n+1]+\delta[n]=\{1,1, \underline{1}\}$ and $h[n]=\delta[n+1]-\delta[n]=\{1, \underline{-1}\}$ where underline shows the origin.
(A) Length of $y[n]$ is 5
(B) $y[n]=0$, when $n<0$
(C) $y[0]=-1$
(D) $y[0]=1$
1.3 Compute deconvolution, when $y[n]=h[n] \circledast x[n]$, and we have $x[n]=\{1, \underline{-2}, 1\}$ and $y[n]=\{\underline{-1}, 1,2,-3,1\}$ where underline shows the origin. Hence, the unknown $h[n]$ is of form
(A) $h[n]=a \cdot \delta[n+1]+b \cdot \delta[n]+c \cdot \delta[n-1]+d \cdot \delta[n-2]$
(B) $h[n]=b \cdot \delta[n]+c \cdot \delta[n-1]+d \cdot \delta[n-2]$
(C) $h[n]=b \cdot \delta[n]+c \cdot \delta[n-1]+d \cdot \delta[n-2]+e \cdot \delta[n-3]$
(D) $h[n]=c \cdot \delta[n-1]+d \cdot \delta[n-2]+e \cdot \delta[n-3]$
where $\{a, b, c, d, e\} \in \mathbb{R}$ and non-zero.
1.4 What is the difference equation corresponding a LTI system shown in Figure 1?
(A) $y[n]-0.9 y[n-1]+0.7 y[n-2]=0.5 x[n]+0.5 x[n-2]$
(B) $y[n]+0.9 y[n-1]-0.7 y[n-2]=0.5 x[n]+0.5 x[n-2]$
(C) $y[n]=0.5 x[n]+0.5 x[n-2]+0.45 x[n-1]-0.35 x[n-2]$
(D) None of above is true
1.5 Consider a stable and causal LTI filter whose poles are $p_{1}=-0.8, p_{2}=-0.5$, and $p_{3}=0.5$, and zeros $z_{1}=-1$, $z_{2}=0.8$, and $z_{3}=1$.
(A) Impulse response $h[n]$ of the filter is symmetric
(B) Difference equation of the filter is $y[n]=K \cdot(x[n]-x[n-1]+0.8 x[n-2]+x[n-3]+0.8 y[n-1]+0.5 y[n-$ 2] $-0.5 y[n-3]$), where K is a scaling factor
(C) Transfer function of the filter is $H(z)=K \cdot \frac{1-0.8 z^{-1}-z^{-2}+0.8 z^{-3}}{1+0.8 z^{-1}-0.25 z^{-2}-0.2 z^{-3}}, \quad|z|>0.8$, where K is a scaling factor
(D) Magnitude response of the filter is $\left|H\left(e^{j \omega}\right)\right|=1$ for all frequencies $\omega \in[0, \pi]$
1.6 Difference equation of a LTI system is $y[n]=x[n]+0.4 x[n-1]-0.21 x[n-2]+1.8 y[n-1]-0.82 y[n-2]$. Magnitude response $\left|H\left(e^{j \omega}\right)\right|$ scaled between $0 \ldots 1$ is
(A) in Figure 2(a)
(B) in Figure 2(b)
(C) in Figure 2(c)
(D) in Figure 2(d)
1.7 Assume that z-transform is known for sequences $g[n]$ and $h[n]$. What does the following lines especially prove for us?

$$
\begin{aligned}
& \sum_{n=-\infty}^{+\infty}\left(\sum_{k=-\infty}^{+\infty} g[k] h[n-k]\right) z^{-n} \\
= & \sum_{k=-\infty}^{+\infty} g[k]\left(\sum_{n=-\infty}^{+\infty} h[n-k] z^{-n}\right) \\
= & \sum_{k=-\infty}^{+\infty} g[k]\left(\sum_{m=-\infty}^{+\infty} h[m] z^{-(m+k)}\right), m=n-k \\
= & \left(\sum_{k=-\infty}^{+\infty} g[k] z^{-k}\right)\left(\sum_{m=-\infty}^{+\infty} h[m] z^{-m}\right)
\end{aligned}
$$

(A) Linear convolution is commutative operation
(B) Product of sequences of infinite length is also infinitely long
(C) z-transform of a convolution of sequences g and h is the same as product of their z-transforms
(D) z-transform of a product of sequences g and h is the same as convolution of their z-transforms
1.8 Which of the following discrete-time sequences is both linear and time-invariant (LTI)?
(A) Filter in Figure 3(a)
(B) Median filter, where $y[n]$ is median of samples $\{x[n], x[n-1], \ldots, x[n-L+1]\}$, where L is number of input samples ("moving median filter")
(C) $y[n]=x[n]+1$
(D) $y[n]=x_{1}[n] \cdot x_{2}[n]$
1.9 Speech is recorded into a computer with the sampling frequency of $f_{T}=10000 \mathrm{~Hz}$ so that the length of the sequence is 29001
(A) According to sampling theorem we can observe frequences up to 9999 Hz
(B) According to sampling theorem we can observe only frequencies whose period is smaller that 0.2 milliseconds
(C) Length of the speech in seconds cannot be determined with given information
(D) None of above is true
1.10 Examine a stable and causal filter

$$
H(z)=\frac{1-z^{-2}}{1-1.5 z^{-1}-0.56 z^{-2}}
$$

(A) Phase response $\angle H\left(e^{j \omega}\right)$ of the filter is linear
(B) Phase response of the filter is in Figure 3(b)
(C) Pole-zero-plot is in Figure 3(c)
(D) Group delay $\tau(\omega)$ of the filter is not constant with respect to ω
1.11 Consider sequences $h[n]=0.8^{n} \mu[n]$ and $x[n]=3 \cdot \sum_{k=0}^{\infty}(-0.5)^{(k / 42)} \delta[n-(k / 42)]$, and their linear convolution $y[n]=h[n] \circledast x[n]$. We know that
(A) the sum of sequences $y[n]$ is $S=\sum_{n=\infty}^{\infty} y[n]=10$
(B) the sum of sequences $y[n]$ is $S=\sum_{n=\infty}^{\infty} y[n]=30$
(C) the sum of sequences $y[n]$ is $S=\sum_{n=\infty}^{\infty} y[n]=42$
(D) the sum of sequences $y[n]$ is $S=\sum_{n=\infty}^{\infty} y[n]$ does not converge

Notice that $\delta[n]=0$, if $n \notin \mathbb{Z}$
1.12 The impulse response of the filter is $h[n]=(-0.8)^{n} \mu[n]$ and the output $y[n]=2 \cdot(-0.8)^{n} \mu[n]-(-0.4)^{n} \mu[n]$.
(A) The filter is averaging the input
(B) The filter is both unstable and non-causal
(C) The input is $x[n]=2 \delta[n]-(0.5)^{n} \mu[n]$
(D) The input is $x[n]=(-0.4)^{n} \mu[n]$
2) (6 p) In the first part of this course we have examined inputs $x[n]$, digital LTI systems $h[n]$ which process them and outputs $y[n]$. These can be processed both in time- and frequency-domain.
Write down an essay about "filtering signals with digital LTI filters".
3) (1 p) Course feedback. Questionnaire http://www.cis.hut.fi/Opinnot/T-61.3010/vK1_K2009/kyselyVK1_en shtml is open till 23 -Mar 2009.

Figure 1: Problem 1.4: block diagram of a filter.

Figure 2: Problem 1.6: Magnitude response, options (A) , (B) , (C) , (D)

Figure 3: Problems 1.8 and 1.10: (a) 1.8 (A) , (b) 1.10 (B) , (c) 1.10 (C)

