
T-61.3010 DSP 2009 (R10) Page 1 / 3

T-61.3010 Digital Signal Processing and Filtering
(v. 1.0, 13.3.2009), Matlab #5 (7.-17.4.2009)

Registration in WebOodi. Bring your own headphones if you have. The assistant will guide
you through the exercises, but you may go on your own speed. Feel free to ask the assistant, if
you have troubles. You can also consult http://www.cis.hut.fi/Opinnot/T-61.3010/how_

to_start_with_matlab.shtml or kuinka_aloitan_matlabin.shtml.

Getting started: In Windows just click Programs - Matlab. Write down the code into sepa-
rate files in your working directory (e.g. Z:\DSP\) for future use. Set the “Current Directory”
in Matlab to point to the working directory (or type cd <workdir>).

The problems marked with [Pxx] are from the course exercise material (Spring 2009).

In the end of this session you should know: (a) how to compute energy in a time frame of
a signal, (b) how to apply ideal filtering to 2D image, and see how ideal filtering can be a bad
choice (instead of non-ideal).

1. [M3013] Speech (audio) signal is often analyzed in small time frames or windows. This
is essential if Fourier analysis is applied. The signal should be stationary when computing
Fourier transform, see [P16]. A typical way of seeing frequency contents of a signal in
function of time is to draw a spectrogram, see Figure 1(b) and Matlab Round #3.

The signal energy of a frame is an example of a feature which can be easily computed, see
Figure 1(a). It can be applied, for instance, to finding out whether the signal is silent or
not at certain time moment. Another feature of a frame is energy at different frequency
bands.

Task: Download a script file M3013.m and kiisseli.wav (or any other speech / audio
file). Go through a demo in M3013.m and find answers to given questions.
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Figure 1: Problem 1: kiisseli.wav, (a) waveform and frame energy, (b) spectrogram and labels
for clusters.

2. [M4003] Consider a Matlab demo picture cameraman.tif seen also in Figure 2(b). It is
2-dimensional matrix with gray-scale values s(x, y), often called as pixels, which are, e.g.,
integers from 0 to 255, where 0 corresponds black and 255 white. The spatial variables
x and y express the position of a pixel (compare to t or n in 1-D case). The size of the
image is 256 × 256 pixels. Its discrete Fourier transform S(u, v) can be computed using
fft2, and it is also a matrix of 256 × 256 complex values.
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Let us filter the picture with an ideal 2-D lowpass filter, and transform it back to spatial
domain using ifft2. Ideal lowpass filtering can be considered in transform domain as
multipling passband (“area”) terms by 1 and stopband terms by 0.

Note that in 1-D case fft computes angles (0 . . . 2π), see Figure 2(a). In 2-D case angle
values of fft2 run ((0 . . . 2π), (0 . . . 2π)), which can be “shifted” around the origo, see
Figures 2(c) and (d), because DFT-2 is 2π-periodic in both dimensions. Shifting from (c)
to (d) can be done using fftshift, if needed. Hence, in lowpass filtering the passband
area, called often mask, containing 1s has to cover (0 . . . ω

c
, 2π − ω

c
. . . 2π) for both

dimensions.
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Figure 2: Problem 2: (a) 1-D spectrum in range (0 . . . 2π), (b) cameraman.tif in spatial
domain, (c) 2-D spectrum in range ((0 . . . 2π), (0 . . . 2π)), (d) the same 2-D spectrum in range
((−π . . . π), (−π . . . π)). Remember that discrete-time Fourier transform is always 2π-periodic:
in (c) left-top corner “b” is ((0 . . . π), (π . . . 2π)) whereas in (d) “b” is ((0 . . . π), (π . . . 2π)− 2π)
= ((0 . . . π), (−π . . . 0)), etc.

%% Read and draw a picture (Matlab demo picture)

I = imread(’cameraman.tif’); % type ’uint8’ = unsigned integer 8bit

figure(1); clf;

imshow(I); axis on;

N = size(I, 1); % size is (N x N)

%% Compute 2D-DFT and plot spectrum

Id = double(I); % convert to ’double’ type

IF = fft2(Id); % 2-D discrete Fourier transform

figure(2); clf;

imagesc(log10(abs(IF))); % axis 0..2pi, 0..2pi like in Figure (c)

%imagesc(log10(abs(fftshift(IF)))); % shifted like in Figure (d)

colormap(gray); % grayscale

axis equal % interval of x and y equal

%% Filter mask of an ideal lowpass filter

wc = 0.3*pi; % cut-off frequency wc, 0 < wc < pi

M = round(wc*N/(2*pi)); % corresponding index, (M/N) == (wc/2pi)

filterMask = zeros(size(I)); % initialize to zeros

filterMask(1:M, 1:M) = 1; % left-top corner,

filterMask(end-M+2:end, 1:M) = 1; % left-bottom corner, ...

filterMask(end-M+2:end, end-M+2:end) = 1;

filterMask(1:M, end-M+2:end) = 1;

figure(3); clf;

mesh(filterMask); colorbar;

%mesh(fftshift(filterMask)); colorbar % shifted like in Figure (d)

%colormap(gray); % grayscale

%% 2-D ideal filtering
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IFfilt = IF .* filterMask; % ideal filtering in transform domain

figure(4); clf;

imagesc(log10(abs(IFfilt)));

%imagesc(log10(abs(fftshift(IFfilt)))); % shifted like in Figure (d)

colormap(gray);

%% Inverse 2D-DFT and plot figure

Ifiltered = real(ifft2(IFfilt)); % may contain small complex values

figure(5); clf;

imshow(Ifiltered, [min(Ifiltered(:)) max(Ifiltered(:))]);

Task: Try filtering with a few different ω
c
∈ (0 . . . π) (wc). How does the lowpass filtering

affect a picture? How is it analogue to audio signals? What kinds of side-effects can be
seen? What kind of side-effects do you believe to happen for audio signals?


