
T-61.3010 DSP 2009 (R03) Page 1 / 4

T-61.3010 Digital Signal Processing and Filtering
(v. 1.0, 30.1.2009), Matlab #2 (3.2., 4.2., 5.2.2009)

Registration in WebOodi. Bring your own headphones if you have. The assistant will guide
you through the exercises, but you may go on your own speed. Feel free to ask the assistant, if
you have troubles. You can also consult http://www.cis.hut.fi/Opinnot/T-61.3010/how_

to_start_with_matlab.shtml or kuinka_aloitan_matlabin.shtml.

Getting started: In Windows just click Programs - Matlab. Write down the code into sepa-
rate files in your working directory (e.g. Z:\DSP\) for future use. Set the “Current Directory”
in Matlab to point to the working directory (or type cd <workdir>).

The problems marked with [Pxx] are from the course exercise material (Spring 2009).

In the end of this session you should know: (a) to be aware of aliasing effect, (b) how to
generate sinusoidal signals, (c) how to load and analyze audio signals in time, frequency and
time-frequency domain, (d) an example of a simple moving average (MA) filter.

1. [M2057] Run the code below in order to plot a cosine signal with A = 2.5, f = 400 Hz,
θ = π/6.

%% Synthesize a cosine signal

fT = 16000; % sampling frequency 16 kHz

f = 400; % frequency 400 Hz

t = [0 : 1/fT : 0.1]; % time axis, 0.1 seconds

y = 2.5 * cos(2*pi*f*t + pi/6); % cosine

%% Plot the signal

figure; % open a NEW window

plot(t, y); % plot to the current active window

grid on;

title(’My cosine’);

xlabel(’time (s)’);

ylabel(’amplitude’);

axis([0.015 0.033 -2.7 2.8]); % manual zoom: [xmin xmax ymin ymax]

%% Listen to the signal

soundsc(y, fT); % or ’wavwrite(y, ...)’ into a file

%% Save the figure into a file

print(’-dpng’,’myCosine.png’); % also saveas(), etc...

Task: Plot the cosine of the previous example and a new cosine (A = 2.5, f = 16400 Hz,
θ = π/6) with black circles in the same axis (help plot, hold on). The interesting result
is that the circles with f = 16400 Hz seem to lie on the curve of a continuous-time cosine
with f = 400 Hz. How do you explain the result, see Figure 1? Compute the normalized
angular frequency ωi = 2π(fi/fT) for both cases.

2. [M2021] Download the file kiisseli.wav. Analyze the audio sample kiisseli.wav in
time and frequency domain with the following code.

%% Read and listen to the signal

[x, fs, nbits] = wavread(’kiisseli.wav’); % download the file!

M = length(x);

T-61.3010 DSP 2009 (R03) Page 2 / 4

400 8000 16000

Spectrum of X

Figure 1: Problem 1: Spectrum |X(ejω)|.

soundsc(x, fs);

%% Plot the signal waveform in time domain

t = [0 : M-1] / fs; % time-axis

figure(1); clf; % open/activate Figure No 1, clean it

plot(t, x);

grid on;

xlabel(’time (sec)’);

title(’/kiisseli/’);

%% frequency domain

xF = fft(x); % Discrete Fourier transform of signal x, 0..2pi

mag = 20*log10(abs(xF)); % in decibels; in linear scale: mag = abs(xF)

w = fs * [0 : (M-1)]/M; % frequency axis

figure(2); clf;

plot(w, mag); % spectrum

grid on;

xlabel(’frequency (Hz)’);

ylabel(’dB’);

title(’DFT of /kiisseli/’);

%% zoom only frequencies from 0 to half of the sampling frequency!

axis([0 fs/2 min(mag) max(mag)]);

%% Time-frequency domain: short-time Fourier-transform STFT / spectrogram

figure(3); clf;

spectrogram(x, 128, 64, 128, fs, ’yaxis’); % spectrogram

title(’Spectrogram of /kiisseli/’);

colorbar; % adds a colorbar: color <=> value

%% If you need to print a grayscale document, then change palette

colormap(gray); % probably better if grayscale printing

colorbar; % adds a colorbar: gray value <=> value

Task: What is the sampling frequency of the audio file? Find a “quasi-periodic” part of
the signal, e.g. /i/, and read the value of fundamental period in Figure 1. The spectrum
in Figure 2 seems to be symmetric before zooming, why so? Why is this spectrum not
so relevant in the speech analysis? What can you see in the spectrogram, Figure 3? You
can also run specgramdemo(x, fs) from command line.

3. [M2056] A normal procedure to get “a big picture” is to take averages inside a certain
time window. The simpliest average is to add two adjacent values (window length 2) and
divide the result by two (Moving Average 2, MA-2):

y[n] = 0.5 · (x[n] + x[n − 1])

T-61.3010 DSP 2009 (R03) Page 3 / 4

It can be shown that the corresponding impulse response and frequency response are

h[n] = 0.5 · (δ[n] + δ[n − 1])

H(ejω) =
∑

k

h[k]e−jkω = 0.5 · (1 + e−jω)

Task: Draw a flow/block diagram of the filter. Fill in the missing line in the Matlab
function ma2.m which implements the MA-2 filter, see the code below. Apply your filter
ma2 to the signal x, e.g. kiisseli.wav.

How does the output look like compared to the input? Listen to the signal before and
after filtering. What can be said about frequency-domain properties of MA-2, in other
words, draw |H(ejω)| in range [0 . . . π]. Is the filter lowpass / highpass / bandpass /
bandstop / allpass?

A function file ma2.m:

function y = ma2(x)

% MA2 computes two-point averaging filter, ‘‘moving average’’

% Usage: [y] = ma2(x);

y = zeros(size(x)); % initialize to zeros

y(1) = x(1); % value y(1)

for k = [2 : length(x)] % one possible implementation

... % FILL THIS LINE

end; % note: index values start from 1

A script file ma2analysis.m for the analysis:

%% Read or create a vector x

[x, fs] = wavread(’kiisseli.wav’);

%% Analysis of MA2 filter

n = [1 : length(x)];

y = ma2(x); % calls function ma2 with x

%% Signals in time-domain

figure(41); clf;

plot(n, x, ’b’, n, y, ’k-.’);

xlabel(’time indices n’);

grid on;

legend({’Original’,’Filtered’});

%% Filter analysis, see [P4] and/or Matlab #1: H(w) = 2 - exp(-j*w)

w = [0 : pi/256 : pi];

H = 0.5 * (1 + exp(-j*w)); % frequency response

r = abs(H); % amplitude response

figure(42); clf;

plot(w, r);

xlabel(’norm. angular frequency \omega’); ylabel(’|H(e^{j \omega})|’);

grid on;

%% Listen to original:

soundsc(x, fs)

%% Listen to filtered:

soundsc(y, fs)

%% Listen to difference:

soundsc(x-y, fs)

T-61.3010 DSP 2009 (R03) Page 4 / 4

1.21 1.22 1.23 1.24
x 10

4

−0.5

0

0.5

index n

Filtering kiisseli.wav: /i/

Original
Filtered

1.728 1.729 1.73 1.731 1.732
x 10

4

−0.5

0

0.5

index n

Filtering kiisseli.wav: /s/

Original
Filtered
Original x[n]
Filtered y[n]

Task: Create a longer MA filter in order to get smoother result.

