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Graph Partitioning & Data Clustering

« Data clustering is to partition a data set into subsets (clusters), so that the data
In each subset share some common trait - often proximity according to some
defined distance measure — Wikipedia

« Given a similarity measure, data clustering can be viewed as a partioning
problem of an undirected (weighted) graph.

 Some properties, e.g. power law and self-similarity, generally does not hold for
the data clustering graphs.

« Other methods for data clustering exist.

Clustering Partitioning
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Spectral Graph Clustering

 Most ideal graph clustering objectives require NP-hard
optimization.

* An alternative is to get an approximated solution by
studying the the spectrum of some matrix.

 Devise a matrix G based on the adjacency matrix W.

e Solve the eigenvalue decomposition problem of G.

 The eigenvectors approximately indicate the membership
of nodes to the clusters.

cut(A,B)y= > W, asso(AV)= > W,

ueA,veB ueA,teVv
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Average Association

asso(A, A) N asso(B, B)

e Maximize

[Al | B
e WX=AX
« x;=1 If vertex; belongs to the cluster and O
otherwise.

 Finds the most cohesive clusters.
e + Good for feaure extraction
e - the approximation is not tight

e - may result in small but tight clusters in the
data.
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Minimizing Average Cut

- . . cut(A,B)+cut(A,B)
 Minimize Al B

¢ (D-W)x=Ax, where D = diag(sum(W))
« L =D - W s called the Laplacian matrix.
* The sign of s; Indicates the membership.

e - Unweighted minimum cut .%o P
. g o O in-cu
tends to favor cutting off ~ ¢®e®® g e meeut?
_ o® 0% '© PY
small regions. Lol o
® ...... ® . . Min-cut |
better cut —»

o - Average CUt CannOt ensure LIIC LVVVU |J(1I LI.LIUI 19 bUIIIputed
will have tight within-group similarity.
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A Bad Result by Average Cut
(a) (b)

AV,

AV
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Minimizing Normalized Cut
cut(A,B)  cut(A,B)
e Minimize asso(A,V)+asso(B,V)
e (D-W)x=ADx
* Approximates Beltrami-Laplace operator in a
Riemannian manifold.
 The smallest eigenvalue corresponds to a trivial
eigenvector (1,1,1,...,)

 The Fiedler vector, the eigenvector with the
second smallest eigenvalue, serves as the most
significant indicator.
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Cut-based Methods Summary

Finding clumps Finding splits
e —-

- Average association Normalized Cut Average cut

]

'Lé asso(AA)  asso(B.B) Cut(A.B) _ cutiA.B) Cut(AB)  cul(AB)

:_,‘é Al IB| asso(A,V) asso(B,V) |A| IB|

2 or

2

2 asso(A,A) n asso(B.B)

a - asso(A, V) asso(B.V)

=

=

E _ = ~

= Wx= A x (D-W)x= ADXx D-W) x = Ax

oo

= or

2 —

g W x =(1- A)D x

g

o
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Maximizing Modularity

e “A good division of a network into communities is not merely one in
which the number of edges running between groups is small. Rather,

It is one in which the number of edges between groups is smaller than
expected.”

* Q = (number of edges within communities) — (expected number of
such edges).

1
Q:%;Mﬁ _Pij]5(giagj)

0;: the community to which vertex i belongs
o(r,s)=1 if r=s and O otherwise

m: total number of edges

P, the expected number of edges between i and |
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A Suggested P;

e Constraint 1: Z ZW.,—zm

 P;=constant is not a good representation of
most real world networks.

e Constraint 2: ZP = ki

ki is actual degree of vertex i in the real network, i.e. K. = ZWU'

* The suggested model ik om

10
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Spectral Optimization of Modularity

« Write 6(g;,9;)=(X+x;)/2

1 1 1
- P XX, =—x"(W=-P)x=—x'Gx
Q= Wy Ry =g (W-Pix= 2

 The most significant indicator is given the leading
eigenvector of G

11
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Example 1: Dolphin Social Network

12
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Other Eigenvectors

* The leading eigenvector divides the network into only two
communities.

 The information in the other eigenvectors may also be
useful.

 Problem: only those eigenvectors corresponding to

positive eigenvalues can give positive contributions to the
modularity.

Q=na +Tr|X"UA-ad)UX]

= na+znlzcl(,3j _a)|:zn:uijxik:|

j=1 k=1

svd(G)=UAU', with A=diag(p).
n: total number of vertices X..=

{ 1 if vertex i belongs to community |
.. J
c: number of communities

0 otherwise
14
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Vector Partitioning Algorithm

 Provided a<p,, define vertex vectors = s,-ay,

p c [ n 2
~na+77 y /Bj_auijxik:|

j=1 k=1L i=l

= +§1$p1_y1[ri]j:|

k=1 j=1] ieCy
C

k=

p—

C, is the set of vertices comprising group k
communitity vectors R, = Zr.

|
iECk

15
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Vector Partitioning (cont.)

(1,1,1,...) is always an eigenvector and the eigenvectors are orthogonal

— Zn:[uj]i=\/ﬁufuj=0
i=1

= Xl =B -aX Uy =B -a Xl ]| =0
=1 1=1 i=1
= Zn:ri =(
i=1
= C Rk = C I, = n I, = 0
k=1 k=1 ieC, i=1

16
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Vector Partitioning (cont.)

Remove a vertex i from a community k where R,-r,<0. Then

R, -, B - | R, = I B —2R,r; >0

17
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Choice of a

2 =Tt{U(A—a)UT —UA-ad)U" |
= Tr|[(A —al) - (A'~ad")[
= Z (ﬂ. - 0‘)2

i=p+l1

Setting the derivative dy?/da=0,

a:; Zn:ﬂu

n-p i=p+1

18
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Miscellenous

* |terative subdivision checking criterion
AQ= ZiGinikak— ZGij

i,jeCk=1 i,jeG

 Negative eigenvalues and bipartite structure

19
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Network Correlations

r=—x Gx
2m
kK.
:12|:Wij _IJ:|X|XJ
2m 5 2m

20
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Community Centrality

Suppose there are p positive eigenvalues and g negative ones.

[Si]j = BiU; [ti]j z\/_/Bn+1—jUi,n+1—j

33 A |

k=1 j=I

o

p

Q: i\/ﬂijuuxlk}

k=1 j=1

C

21
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Community Centrality (cont.)

22
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Discussions

e + rich maths support

e + obtain a good approximate in a single step
e - no scalable

o ? similarity for data clustering

e ? network with power laws and self-similarity
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