Multimodal affect recognition

Tiina Lindh-Knuutila Jaakko Väyrynen

14.3.2005

Outline

- * Introduction
- * Emotions
- * Problem domain
- * Affect-recognition from single modalities
- * Affect-recognition from multiple modalities
- * Conclusions
- * Data collection task for exercise

Multimodal affect recognition

- Pantic, M. and Rothkrantz, L. Toward an Affect-Sensitive Multimodal Human-Computer Interaction. *Proceedings of the IEEE*, 91(1). 2003
- * Images for the data collection task: Japanese Female Facial Expression (JAFFE) database

Background

- * Psychological theories of affective states
- * Emotional intelligence measures communication skills
 - ★ recognition of affective states
 - * interpersonal social communication
- * Based on nonverbal communicative cues

Affective computing

- * Target: emotionally intelligent human-computer interaction (HCI)
- ★ Tasks
 - ★ sensing
 - * tracking
 - ★ analysis
 - * affect arousal

Motivation

- * More human-like interaction
 - 🔹 natural
 - * trustworthy
 - * efficacious
 - * persuasive
 - * may cause problems
- * Benefits in surveillance, monitoring, interpreting, indexing, ...

Views on emotions (1)

- * Classical view
 - * basic expressions of emotions
 - * happiness, anger, sadness, surprise, disgust, fear
 - * hardwired into specific neural structures
 - ★ recognized cross-culturally

Views on emotions (2)

- * Russell
 - ★ multidimensional affect space
 - * critique of experiment design
- * Ortony and Turner
 - * components of emotions are linked with communicative displays
- * Social constructivists (Averill)
 - * interpretation and response to classes of situations
 - * do not explain the genuine feeling

Multimodal emotional cues

- Multimodal analysis of multiple communication channels
- * Modalities
 - ★ sight, hearing, touch
- * Cues from different modalities
 - * e.g. vocal intonation, facial expression
- * The modalities support each other
- * Recognition depends on many factors

Emotions: summary

- * No consensus of
 - * basic emotions
 - * expressions of emotions
- * Limited set of emotions
- * Display of emotions most likely culturally dependent

Fundamental research questions

- * What is an affective state?
- * What kinds of evidence warrants conclusions about affective states?
- * How can various kinds of evidence be combined to generate conclusions about affective states?

Technical questions

- * How should emotions be recognized?
 - * different modalities
 - * obtrusive methods
- * Human-like performance
 - human-like sensors?
 - * human-like recognition level?

Methodological questions

- * What are the appropriate channels?
- * How to combine the information conveyed by the channels?
- * How to handle temporal aspects?
- * How to make them context-sensitive?

Affect-recognition from single modalities

- * Choice of selected moods application dependent
- * Context is not taken into account
- * Modalities: haptic, visual, audio
 - * single tactile-based affect recognition study
 - ★ data collection not comfortable
 - ★ signals measured

electromyogram from jaw, blood volume pressure, skin conductivity, respiration and heart rate

* audio- and visual data based recognition next

Single modality: Face/visual

- * Three subproblems
 - ★ finding the face
 - ★ detecting facial features
 - * classifying data to affect categories
- Various classification techniques
- Focused at attempts to recognize a small set of posed prototypic facial expressions of basic emotions

Single modality: Audio/speech

- * Two subproblems:
 - * determining the features
 - * classification into categories
- * Typical features: pitch, intensity, speech rate, pitch contour, phonetic features
- ★ Test data small
- * Exaggerated vocal expressions of affective states carefully pronounced by actors

Features with emotional correlation

	Happiness	Anger	Fear	Sadness
Pitch	increase in mean, range, variability	increase in mean, range, variability	increase in mean, range	decrease in mean, range
Intensity	increased	increased	normal	decreased
Duration				
(speech	increased rate,	increased rate, reduced increased rate,		
rate)	slow tempo	rate	reduced rate	reduced rate
Pitch contour	descending line	descending line, stressed syllables ascend frequently & rhythmically, irregular up & down inflection	disintegration in pattern great number of changes in the direction	descending line

Affect-recognition from multiple modalities

- * Automatic bimodal affect recognition
 - * the authors found only four studies
 - * general assumptions made
 - ★ clean audiovisual input:
 - * clearly pronounced single word
 - * exaggerated facial expressions of 'basic' emotions
 - ★ context-independency
 - * classifying into basic emotion classes: happiness, sadness, anger, surprise, fear, dislike/disgust

Chen et al.

- * Rule-based method
- * Speech: pitch, intensity, pitch contours
- Video: facial features e.g., raising/lowering the eyebrows
- * No separate test set
- * Quantification of the recognition rate is not reported

De Silva and Ng

- * Rule-based method
- * Speech: pitch, pitch contours
 - * HMM-based classification into emotion classes
- Video: displacement and velocity of e.g., mouth corners with the optical flow method
 - * nearest neighbor classification into emotion classes
- * 72 % recognition rate for a reduced data set

Yoshitomi et al.

- * Hybrid method
- * Speech: pitch, intensity, pitch contours
 - * HMM classification into emotions
- IR and VR images of maximal intensity for the syllables in the word 'Ta-ro'
 - * extraction of regions of interests (mouth, eyebrow...)
 - * differential image based on 'neutral' images
 - * DCT of differential IR and VR images fed to an ANN
- * Summing of classifications for the final decision
- ✤ 85% recognition rate for a reduced data set

Chen and Huang

- ★ Set of methods
- * Speech: pitch, intensity, speech rate
 - * classification using Gaussian distributions
- * Video: facial motion tracking
 - ★ piecewise Bezier volume deformation model (3D)
 - * 12 predefined facial muscle actions estimated
 - classification by a sparse network of winnows with naive Bayes output nodes
- ✤ 79% person-dependent recognition rate
- ✤ 53% person-independent recognition rate

Challenges: visual

- ⋆ Scale
- * Resolution
- * Pose
- * Occlusion
- * Changing illumination
- * Movement, tracking

Challenges: audio

- * Unconstrained continuous speech
 - * naturally spoken
 - * rather meaningful than semantically neutral content
 - * range of speakers and languages
- * Development of better affective state features

Challenges: multimodal input (1)

- Handling partial, missing and erroneous data
 methods: HMM, SVM
- Unsupervised learning of human behavioral grammar
 - * application, user and context-dependent grammars
- * Integration of modalities at the feature level
 - * context dependent models
 - ★ methods: Bayesian inference, ...

Challenges: multimodal input (2)

- * Affect-sensitive interpretation of multimodal input
- * Context sensitivity
- * Multiple-emotion categories
- * Other than 'basic' emotions
- * Unsupervised learning for the interpretation

Validation issues

 Proposal of a commonly used audio-visual database for the validation of the results

Conclusions

- * Perceiving emotions has a multimodal nature
- * State-of-the-art systems not quite mature yet
 - ★ most use only a single modality
 - * context is not taken into account
- * Future

