B. Schölkopf and A. Smola

Learning with kernels,
Chapter 7: Pattern Recognition (7.1-7.4)
explained by Ramūnas Girdzius̆as
March 10, 2003

Introduction

Considering binary classification task

- labelled examples $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathcal{H} \times\{ \pm 1\}$
- hyperplane $\{\mathbf{x} \in \mathcal{H} \mid\langle\mathbf{w}, \mathbf{x}\rangle+b=0\}, \mathbf{w} \in \mathcal{H}, b \in R$.
- decision function $\mathbf{x} \mapsto f_{\mathbf{w}, b}(\mathbf{x})=\operatorname{sgn}(\langle\mathbf{w}, \mathbf{x}\rangle+b)$.
it is good to seek for the decision function $f_{\mathbf{w}, b}(\mathbf{x})$ that
- correctly classifies given samples $f_{\mathbf{w}, b}\left(\mathbf{x}_{i}\right)=y_{i}, \forall i$.
- maximizes the margin $\rho=\min _{i}\left|\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)\right| /\|\mathbf{w}\|$.

This presentation

- is about what the margin is, why to maximize it, and how to do it;
- serves as an intro to the Support Vector Classifier.

Definition $\rho=\min _{i}\left|\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)\right| /\|\mathbf{w}\|$ clarified

Kuva 1: $\rho=|\langle\mathbf{w}, \mathbf{x}\rangle+b| /||\mathbf{w}\|=|\langle\mathbf{w}, \mathbf{d}\rangle| / / \mid \mathbf{w}\|=$ const $/\|\mathbf{w}\|$.

Why to maximize ρ ?

(a)

(b)

Kuva 2: Larger margin classifier tolerates bounded noise when $r<\rho$ (a). There is also parameter insensitivity when $|\Delta \gamma|<\arcsin \frac{\rho}{R}$ (b).

Theorem 7.3 (Margin Error Bound)

Consider the set of decision functions $f(\mathbf{x})=\operatorname{sign}\langle\mathbf{w}, \mathbf{x}\rangle$ with $\|\mathbf{w}\| \leq \Lambda$ and $\mathbf{x} \leq R$, for some $R, \Lambda>0$. Moreover, let $\varrho>0$, and ν denote the fraction of training examples with margin smaller than $\varrho /\|\mathbf{w}\|$, referred to as the margin error.
For all distributions P generating the data, with probability at least $1-\delta$ over the drawing of the m training patterns, and for any $\varrho>0$ and $\delta \in(0,1)$, the probability that a test pattern drawn from P will be misclassified is bounded from above, by

$$
\begin{equation*}
\nu+\sqrt{\frac{c}{m}\left(\frac{R^{2} \Lambda^{2}}{\varrho^{2}} \ln ^{2} m+\ln (1 / \delta)\right)}, \tag{1}
\end{equation*}
$$

c is a universal constant.

How to construct Optimal Margin Hyperplane?

Remember that margin is $\rho=\min _{i}\left|\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)\right| /\|\mathbf{w}\|$.
Notice that $\langle\mathbf{w}, \mathbf{x}\rangle+b=0$ does not change if we multiply \mathbf{w} and b by some constant. One can always choose it so that $\rho=1 /\|\mathbf{w}\|$.

The so-called primal quadratic program will find the OMH:

$$
\begin{align*}
\mathbf{w}^{*}, b^{*}= & \arg \min _{\mathbf{w}, b} \frac{1}{2}\|w\|^{2} \tag{2}\\
& \text { s.t. } y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1, \quad \forall i=1, \ldots, m
\end{align*}
$$

Notice, this is not the only way to seek for the OMH:

1. there is a convex hull-based formulation on p.199-200.
2. 'noisy perceptron' would do in simple cases as well!
3. below we consider the so-called dual problem to Eq. 2.

Optimal Margin Hyperplane in the Dual Space

It is extremely useful to consider the Lagrangian for Eq. 2.

$$
\begin{equation*}
L(\mathbf{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left(y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)-1\right), \alpha_{i}>0 . \tag{3}
\end{equation*}
$$

It can be shown, the dual quadratic program:

$$
\begin{align*}
\boldsymbol{\alpha}^{*}= & \arg \max _{\boldsymbol{\alpha}} \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle, \tag{4}\\
& \text { s.t. } \sum_{i=1}^{m} \alpha_{i} y_{i}=0, \text { and } \alpha_{i} \geq 0, \quad \forall i=1, \ldots, m .
\end{align*}
$$

allows to find OMH in terms of α_{i} :

- the dot-product $\langle\mathbf{w}, \mathbf{x}\rangle=\sum_{i=1}^{m} \alpha_{i} y_{i}\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle$,
- the bias b can be determined from the KKT optimality condition:

$$
\alpha_{i}\left(y_{i}\left(\left\langle\mathbf{x}, \mathbf{x}_{i}\right\rangle+b\right)-1\right)=0 .
$$

The patterns \mathbf{x}_{i} for which $\alpha_{i}>0$ are called Support Vectors.

Nonlinear Support Vector Classifiers

Two improvements to linear classifier considered before:

1. consider nonlinear map into higher dimensional space:

$$
\Phi: \mathbf{x} \mapsto \boldsymbol{\phi}(\mathbf{x}), \quad \mathbf{x} \in \mathcal{H}_{1}, \boldsymbol{\phi}(\mathbf{x}) \in \mathcal{H}_{2}, \quad \operatorname{dim}\left(\mathcal{H}_{2}\right) \gg \operatorname{dim}\left(\mathcal{H}_{1}\right) .
$$

2. implement it efficiently by applying the so-called kernel trick

$$
\left\langle\phi(\mathbf{x}), \phi\left(\mathbf{x}_{i}\right)\right\rangle=k\left(\mathbf{x}, \mathbf{x}_{i}\right) .
$$

Notice that it is not bad to increase the dimensionality:
For m points in general position in an N-dimensional space, $m>N+1$, the number of possible linear separations is
$2 \sum_{i=0}^{N}\binom{m-1}{i}$ (Cover's theorem).

Kuva 3: This is an example on how a nonlinear SVC works.

Kuva 4: SVC as a neural network. Each neuron in the hidden layer computes the kernel function between the input pattern ' 1 ' and some support vector \mathbf{x}_{i} for which $\lambda_{i}=y_{i} \alpha_{i} \neq 0$.

Exercise

1. Download data from www.cis.hut.fi/ramunasg/temp/tik61183/data.mat.
\gg data
data $=$
trainvecs: [3312x13 double]
trainlabels: 3312 x 1 cell
testvecs: [60x13 double]
testlabels: 60 x 1 cell
2. Apply SVC. You can use any package you like, have a look at www.kernel-machines.org.
3. Report the best SVC that you will obtain, i.e. type of the kernel, its parameters, C, does a total relative number of support vectors match the achieved test error?

Additional info (to get an even number of slides)

Kuva 5: The data represents cepstrum vectors extracted from about 60 spoken Finnish words. Each vector corresponds to either subphoneme, or the beginning (end) of a word. 22 classes at your disposal. Btw, figure shows SOM that was used to get prototypes for the LVQ classifier from the data. SVC had a bit better recognition performance (80%) than the SOM-LVQ classifier.

