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Introduction & Contents

• Learning implies the minimization of some risk functional

• In general a difficult task (many local minima)

• In case of kernels: (typically) convex optimization

• 1-dimensional: Interval cutting, Newton method

• N-dimensional: Conjugate gradient descent, predictor corrector

method

• Duality theory (Kuhn-Tucker (KKT) condition)



Convex Optimization (1/4): Convex Sets

• Lines with endpoints in the set are fully contained in the set

• Intersection of two convex sets is also convex



(2/4): Convex Functions
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• Function f : X → R is convex iff below-sets are convex

(assuming X convex)

Xc := {x ∈ X | f(x) ≤ c} (1)



(3/4): Vertex of a Set

• A point is a vertex, if it cannot be reconstructed from other points

• Line segments between vertices of a convex set reconstruct the

whole set



(4/4): Convex - Results

For convex functions on a convex set:

• Local minimum is a global minimum

• Maximum can be found at one of the vertices



Functions of One Variable (1/4): Interval
Cutting
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• Cut the interval in two halves

• Choose based on f ′



(2/3): Error Bound and Convergence of
Interval Cutting

• One can find a bound for the true minimum

• The convergence is linear with constant 0.5

= The error is halved at each iteration



(3/4): Newton Method
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• Fit a parabola to f(x1), f
′(x1), f

′′(x1) and use it’s minimum as x2

• If the starting point is sufficiently close to the minimum:

– Will converge at least quadratically



(4/4): 1-D Discussion

• If Newton method converges, we know the solution is correct

• If not, something must be done

• Sometimes the problem is unconstrained

– One can guess an interval

– If it was too small, enlarge it



Functions of Several Variables (1/6):
Gradient Descent

• Find the direction of steepest descent

• Find the step size using one variable methods above

xn+1 = xn − γf ′(xn), (2)

where γ = arg min f(xn+1)

• Gradient descent can be shown to converge

• Note: consecutive updates are orthogonal!



(2/6): Properties of Gradient Descent

• Assume that f is quadratic: f(x) = 1
2 (x − x∗)T K(x − x∗) + c

• min f(x) = f(x∗) = c, f ′(x) = K(x − x∗)

• K assumed strictly positive definite and symmetric

• Kantorovich inequality tells:

– Gradient descent performs poorly if some of the eigenvalues of K

are small compared to the largest one



(3/6): Conjugate Gradient Descent

• x and y are K-orthogonal iff xT Ky = 0
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• K-orthogonal updates do not disturb each other in the quadratic

optimization problem

• Idea: fit a quadratic function to the object function

That is, approximate K somehow (e.g. the Hessian of f)



(4/6): Conjugate Gradient Descent

Generic conjugate gradient descent vs. Polak-Ribiere

xi+1 = xi −
gT

i vi

vT
i f ′′(xi)vi

vi xi+1 = xi + αvi

vi+1 = −gi+1 +
gT

i+1f
′′(xi)vi

vT
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i
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where gi is shorthand for f ′(xi)

• The computation of the Hessian f ′′(xi) is a costly operation

• Since it is an approximation anyway, some variants avoid it



(5/6): Predictor Corrector Method

• Predictor corrector method obtains the performance of higher order

methods without actually implementing them

• To find f(x∗) = 0

• Expand f(x) = gxi
(x) + Txi

(x),

where gxi
is a simple function fitted to f at xi

• Predictor: Solve gxi
(xpred) = 0 for xpred

• Corrector: Solve gxi
(xi+1) + Txi

(xpred) = 0 for xi+1

• Eliminates lower order terms



(6/6): Predictor Corrector Method - Example
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Constrained Problems (1/5):
Problem Statement

• The typical problem with kernel machines is:

• Minimize f(x)

subject to ci(x) ≤ 0 for all i = 1, 2, . . . , n

• Equality constraints ej(x) = 0 can be handled analogously

• Note 1: If ci are convex functions,

the feasible region {x | ∀i : ci(x) ≤ 0} is convex

• Note 2: Optimality of x∗ does not require f ′(x∗) = 0



(2/5): Kuhn-Tucker Saddle Point Condition

• Define a Lagrangian:

L(x, α) := f(x) +
n∑

i=1

αici(x) (3)

• Restrict αi ≥ 0 for all i

• If there is such an (x∗, α∗) that for every (x, α)

L(x∗, α) ≤ L(x∗, α∗) ≤ L(x, α∗) (4)

• Then x∗ is a solution and ∀i : α∗

i ci(x
∗) = 0

• This KKT criterion is also necessary if f and ci are convex



(3/5): KKT for Differentiable Problems

• The KKT condition can be rewritten as:

∂xL(x∗, α∗) = 0 (5)

∀i : ∂αi
L(x∗, α∗) ≤ 0 (6)

n∑

i=1

α∗

i ci(x
∗) = 0 (7)

• Optimization problem transformed into a set of equations

• Error bound: f(x) ≥ f(x∗) ≥ f(x) +
∑n

i=1 αici(x) (KKT-gap)

assuming that (x, α) satisfies (5) and (6)



(4/5): Wolfe’s Dual Optimization Problem

• It is possible to eliminate x from the differentiated KKT condition

if the functions are simple enough

• The resulting optimization problem with α is called the Wolfe’s dual

• Primal has m variables and n constraints

Dual has n variables and m constraints

⇒ If n < m, the dimensionality of the problem is smaller

• Constraints become simpler (αi ≥ 0)



(5/5): Primal and Dual of Linear and
Quadratic Problems

primal (in x) dual (in α)

solution exists solution exists

no solution unbounded or infeasible

unbounded or infeasible no solution

inequality constraint inequality constraint

equality constraint free variable

free variable equality constraint



Summary

• Machine learning ≈ optimization of a risk functional

• Optimization step can be divided into

1) finding a direction and 2) finding a step size

• Typical idea: Fit a simpler function to the current hypothesis

• Convexity is a useful property

– Local minimum ⇒ global minimum

– Maximum can be found on the vertices

– Kuhn-Tucker condition becomes equivalent to finding the

solution → duality theory



Exercise 6.4

Denote by f a convex function on [a, b]. Show that the algorithm below

finds the minimum of f . What is the rate of convergence in x to

arg minx f(x)? Can you obtain a bound in f(x) wrt. minx f(x)?

input: a, b, f and threshold ε

x1 = a, x2 = a+b
2 , x3 = b

repeat

if x3 − x2 > x2 − x1 then x4 = x2+x3

2 else x4 = x1+x2

2

Keep the two points closest to the point with the minimum value

of f(xi) and rename them such that x1 < x2 < x3

until x3 − x1 ≥ ε


