Chapter 2 :: Kernels

Karthikesh Raju Lab. of Comp. & Info. Sc. karthik@james.hut.fi

2003.02.03

SVM and KM 2003.02.03

+= + → ≥ ■ ? X

Reference:

- ★ Bernhard Schölkopf and Alex Smola, Learning with Kernels - Support Vector Machines, Regularization, Optimization and Beyond, MIT Press, Cambridge, MA, 2002, pp 25-60
- ★ Steve R. Gunn, Support Vector Machines for Classification and Regression, Technical Report, Faculty of Engg. and App. Sc., Dept. of ECE. http:

//www.isis.ecs.soton.ac.uk/isystems/kernel/

Outline

- \star Introduction
- ★ Polynomial Kernels
- \star Kernels to Feature Spaces
- ★ Reproducing Kernel Hilbert Spaces & Mercer Kernels
- ★ Empirical Kernel Map
- \star Examples and Properties of Kernels
- ★ Conclusions
- ★ Problems

Introduction

$$X(\omega_k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N}, \quad k = 0, 1, \dots, N-1$$

\bigstar Is a DFT of x(n)

- ★ The function $e^{-j2\pi nk/N}$ gives raise to the Fourier operator
- ★ This function can be regarded as Kernel of the Fourier Transform.
- \star So, what are kernels?

Terminology: A function k which gives rise to an operator T_k via

$$(T_k f)(x) = \int_{\mathcal{X}} k(x,x') f(x') dx'$$

is called the kernel of T_k

History: The term kernel was first used in the field of integral operators as studied by Hilbert and others. Specific Names: ¹ Reproducing Kernel, admissible kernel, Mercer Kernel, Support Vector Kernel, nonnegative definite kernel, covariance kernel.

¹Only applicable to PD kernels

Kernels of Interest

 \bigstar Here, we are interested in kernels k of the type

$$\Phi \quad : \quad \mathcal{X} \to \mathcal{H}$$
$$x \to \mathbf{x} := \Phi(x)$$

★ i.e Kernels that correspond to dot products in feature spaces $\mathcal H$ via a map Φ

$$k(x,x') = \langle \Phi(x), \phi(x') \rangle$$

★ What kind of functions k(x, x') admit such representations?

Lab. of Comp & Info. Sc.

Polynomial Kernels

★ Given 2D patterns $\mathcal{X} = \mathbb{R}^2$, consider the nonlinear map

$$\Phi : \mathbb{R}^2 \quad \rightarrow \quad \mathcal{H} = \mathbb{R}^3$$

 $(x_1, x_2) \quad \rightarrow \quad (x_1^1, x_2^2, x_1 x_2)$

- \star This is a collection of product features of degree 2
- ★ Such polynomial classification works for small examples, fails when N is large
- ★ Example: 16×16 images with a monomial degree d = 5 yields a dimension of 10^{10} Impractical !!!

- ★ Kernels provide methods to compute dot products in higher dimensional spaces without explicitly mapping into these spaces
- \star Consider the map:

$$\Phi:(x_1,x_2) \ o \ (x_1^1,x_2^2,x_1x_2,x_2x_1)$$

- ★ Dot products in the feature space \mathcal{H} are the form $\langle \Phi(x), \Phi(y) \rangle = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2 = \langle x, y \rangle^2$
- ★ The kernel is the square of the dot product in the input space
- ★ So, in general kernels for polynomials the kernel is computed as

Lab. of Comp & Info. Sc.

SVM and KM 2003.02.03

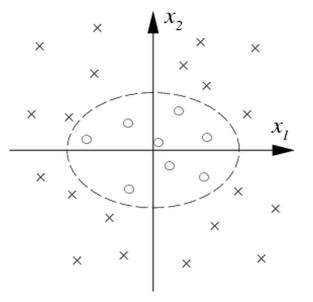
$$k(x,y) = \langle \Phi_d(x), \Phi_d(y) \rangle = \langle x, y \rangle^d$$

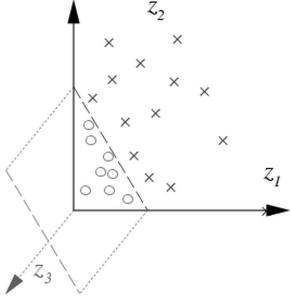
- ★ Ordered and unordered polynomial products lead to different maps.
- ★ Multiple occurrences of unordered polynomials are compensated by scaling them with $\sqrt{(d-n+1)!}$, *n* the number of such occurrences as

$$\Phi_2(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

★ Although ordered (C_d) and unordered (Φ_d) map into different feature spaces, they are valid instantiations of feature maps for

$$k(x,y) = \langle x,y \rangle^d$$





True boundary:: Ellipse in the input space

Boundary:: Hyperplane in the feature space

Figure 1: Binary Classification mapped into feature space

Lab. of Comp & Info. Sc.

Definitions of Kernelogy

Gram Matrix: A function $k : \mathcal{X}^2 \to \mathbb{K}$ and patterns $x_1, \ldots, x_m \in \mathcal{X}$, the $m \times m$ matrix

$$K_{ij} = k(x_i, x_j)$$

is the Gram matrix or Kernel Matrix of k

PD Matrix: A complex $m \times m$ matrix K satisfying

$$\sum_{i,j} c_i \bar{c}_j K_{ij} \ge 0$$

for all $c_i \in \mathbb{C}$ is positive definite.

Lab. of Comp & Info. Sc.

SVM and KM 2003.02.03

· 🖛 🔿 🗰 😤 🗶 ? 🗙

PD Kernel: A function k on $\mathcal{X} \times \mathcal{X}$ that gives rise to a positive definite Gram matrix is a pd kernel.

Additional Points

- ★ Kernels can be considered as generalized dot products.
- ★ Linearity of dot products does not carry over to kernels
- ★ Cauchy-Schwarz inequality can be extended to kernels as

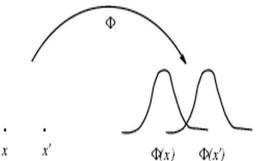
$$\left|k(x,y)\right|^{2} \leq k(x,x)k(y,y)$$

Reproducing Kernel Map

- \star k a real valued, pd kernel, \mathcal{X} a nonempty set.
- ★ Define a map from \mathcal{X} into a space of functions mapping \mathcal{X} to \mathbb{R} , denoted as $\mathbb{R}^{\mathcal{X}} := \{f : \mathcal{X} \to \mathbb{R}\}$ as

$$egin{array}{rll} \Phi & : & \mathcal{X}
ightarrow \mathbb{R}^{\mathcal{X}} \ & & x
ightarrow k(.,x) \end{array}$$

 $\Phi(x)$ denotes the function that assign the value k(x',x) to $x'\in \mathcal{X}$ i.e., $\Phi(x)(.)=k(.,x)$



- **\star** Each pattern has been turned into a function on domain \mathcal{X}
- ★ Now the pattern is represented by the similarity to all other points in the input domain.
- \star To construct a feature space associated with Φ :
 - Create a vector space out of the image Φ
 - Define a dot product in this space has a strictly pd bilinear form
 - See to that it satisfies $k(x,x') = \langle \Phi(x), \Phi(x') \rangle$

- ★ Then this kernel is called Reproducing Kernel and the map is Reproducing Kernel Map
- ★ It is also possible to define a mapping Φ from \mathcal{X} into a dot product space and obtain a pd kernel.
- \star Defines the equivalence of kernels.

Kernel Trick

Given an algorithm, formulated in terms of a pd kernel k, an alternative algorithm can be constructed by replacing k by another pd kernel \tilde{k}

- ★ After replacement the dot product operates on $\tilde{\Phi}(x_1), \ldots, \tilde{\Phi}(x_1)$ instead of $\Phi(x_1), \ldots, \Phi(x_1)$
 - Example: k is a dot product in the input domain
 - However, k and \tilde{k} can be nonlinear algorithms
 - **Caution:** Certain algorithm work only subject to additional input conditions on the data
 - Hence, not every conceivable pd kernel will make sense.

Reproducing Kernel Hilbert Spaces

$$\Phi: \mathbb{R}^N \to \mathcal{H}, \ \mathbf{x} \to k(\mathbf{x}, .)$$

- ★ These functions were defined in dot product spaces
- \bigstar Endowing a norm $||x||:=\sqrt{\langle x,x\rangle}$, then $\mathcal H$ is a RKHS if
 - *k* has the reproducing property

•
$$k \operatorname{spans} \mathcal{H}$$

$$\begin{cases} \langle \Phi, k(x, .) \rangle &= \Phi(x), \ \forall \Phi \in \mathcal{H} \\ \langle k(x, .), k(y, .) \rangle &= k(x, y) \end{cases} \\ f(x) = \sum_{i} a_{i}k(x, x_{i}) \end{cases}$$

Mercer Kernel

 \star Let k be a symmetric real valued kernel such that

$$k(x,y) = \sum_{j}^{N_{\mathcal{H}}} \lambda_j \psi_j(x) \psi_j(y)$$

holds for almost all (x, y)

- ★ where $\lambda_j > 0$ the eigen values, ψ_j normalized orthogonal eigen functions i.e $\psi_i \psi_j = \delta_{ij}$
- \star k is a Mercer Kernel Map

Empirical Kernel Map

★ For a given set $\{z_1, \ldots, z_n\} \subset \mathcal{X}, n \in \mathbb{N},$

$$\Phi_n : \mathbb{R}^N \longrightarrow \mathbb{R}^n$$
$$x \to k(.,x)|_{\{z_1,...,z_n\}} = (k(z_1,x),\ldots,k(z_n,x))^T$$

is the empirical kernel map wrt $\{z_1, \ldots z_n\}$.

- ★ Evaluation of the kernel map on the training patterns
- ★ Direct extension of this concept is Kernel PCA map

Examples of kernels

★ Polynomial Kernel

$$k(x,y) = \langle x,y
angle^d$$

★ Gaussian RBF kernels

$$k(x,y) = \exp(-rac{||x-y||^2}{2\sigma^2})$$

 \star Sigmoid

$$k(x,y) = \tanh(\kappa \langle x,y \rangle + \vartheta)$$

★ Inhomogeneous polynomials

Lab. of Comp & Info. Sc.

$$k(x, y) = \left(\langle x, y \rangle + c\right)^d$$

Properties

★ The above kernels are unitary invariant

$$k(x,y) = k(\mathcal{U}x,\mathcal{U}y), ext{if } \mathcal{U}^T = \mathcal{U}^{-1}$$

where \mathcal{U} is for instance a rotation

★ RBF kernels are translation invariant

$$k(x, y) = k(x + x_o, y + y_o) \forall x_o \in \mathcal{X}$$

★ Polynomial kernels are invariant under orthogonal transformations of \mathbb{R}^N up to a scaling factor

Lab. of Comp & Info. Sc.

- ★ Gram Matrix of a Gaussian RBF kernel is full rank
 - Implies $\Phi(x_1), \ldots, \Phi(x_m)$ are linearly independent
 - They span the m dimensional subspace of ${\mathcal H}$
 - RBKs defined on domains of infinite cardinality, with no a priori restriction of training examples, produces an infinite dimension feature space.
 - The data is mapped in a way that smooth and simple estimates are possible.

Kernel Selection

- ★ With so many different mappings to choose from, which is the best for a particular application?
- ★ SVMs can be seen as one framework for comparison of these mappings
- ★ The upper-bound is provided by SLT, which provides an avenue to compare these kernels
- ★ The question has remained for a long time and cross-validation remains the preferred method for kernel selection

Conclusions

- ★ Kernels from the cornerstone of SVM and other Kernel methods
- ★ Permit the computation of dot products in high-dimensional spaces, using functions defined on pairs of input patterns.
- ★ Kernel trick allows formation of nonlinear variants of any algorithm cast in terms of dot products.
- ★ Though, any dot product based algorithm can be kernelized care must be taken to choose the kernel, which until now is only through cross validation.

Problems

- ★ (2.1 Monomial Features in ℝ²•) Verify (2.9) on page
 27
- ★ (2.33 Translation of a Dot Product •) Prove (2.79) on page 48
- ★ (2.35 Polarization Identity ••) For any symmetric bilinear form $\langle ., . \rangle : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, we have, $\forall x, y \in \mathcal{X}$

$$\langle x, y \rangle = \frac{1}{4} (\langle x + y, x + y \rangle - \langle x - y, x - y \rangle)$$

Now consider the spl. case where $\langle ., . \rangle$ is an

Lab. of Comp & Info. Sc.

SVM and KM 2003.02.03

🖛 🖛 🗰 🗃 ? 🗙

Euclidean dot product and $\langle x - y, x - y \rangle$ is the squared Euclidean distance between x and y. Discuss why the polarization identity does not imply that the value of the dot product can be recovered from the distances alone. What else does one need?