Chapter 2 :: Kernels

Karthikesh Raju
Lab. of Comp. \& Info. Sc.
karthik@james.hut.fi
2003.02.03

Reference:

\star Bernhard Schölkopf and Alex Smola, Learning with Kernels - Support Vector Machines, Regularization, Optimization and Beyond, MIT Press, Cambridge, MA, 2002, pp 25-60

* Steve R. Gunn, Support Vector Machines for Classification and Regression, Technical Report, Faculty of Engg. and App. Sc., Dept. of ECE.
http:
//www.isis.ecs.soton.ac.uk/isystems/kernel/

Outline

\star Introduction
\star Polynomial Kernels
\star Kernels to Feature Spaces
\star Reproducing Kernel Hillbert Spaces \& Mercer Kernels
\star Empirical Kernel Map
\star Examples and Properties of Kernels
\star Conclusions
\star Problems

Introduction

$$
X\left(\omega_{k}\right)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi n k / N}, \quad k=0,1, \ldots, N-1
$$

\star Is a DFT of $x(n)$
\star The function $e^{-j 2 \pi n k / N}$ gives raise to the Fourier operator

* This function can be regarded as Kernel of the Fourier Transform.
\star So, what are kernels?

Terminology: A function k which gives rise to an operator T_{k} via

$$
\left(T_{k} f\right)(x)=\int_{\mathcal{X}} k\left(x, x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}
$$

is called the kernel of T_{k}
History: The term kernel was first used in the field of integral operators as studied by Hilbert and others.
Specific Names: ${ }^{1}$ Reproducing Kernel, admissible kernel, Mercer Kernel, Support Vector Kernel, nonnegative definite kernel, covariance kernel.

[^0]
Kernels of Interest

\star Here, we are interested in kernels k of the type

$$
\begin{aligned}
\Phi: & \mathcal{X} \rightarrow \mathcal{H} \\
& x \rightarrow \mathrm{x}:=\Phi(x)
\end{aligned}
$$

\star i.e Kernels that correspond to dot products in feature spaces \mathcal{H} via a map Φ

$$
k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \phi\left(x^{\prime}\right)\right\rangle
$$

\star What kind of functions $k\left(x, x^{\prime}\right)$ admit such representations?

Polynomial Kernels

\star Given 2D patterns $\mathcal{X}=\mathbb{R}^{2}$, consider the nonlinear map

$$
\begin{aligned}
\Phi: \mathbb{R}^{2} & \rightarrow \mathcal{H}=\mathbb{R}^{3} \\
\left(x_{1}, x_{2}\right) & \rightarrow\left(x_{1}^{1}, x_{2}^{2}, x_{1} x_{2}\right)
\end{aligned}
$$

\star This is a collection of product features of degree 2
\star Such polynomial classification works for small examples, fails when N is large
\star Example: 16×16 images with a monomial degree $d=5$ yields a dimension of 10^{10} Impractical !!!

* Kernels provide methods to compute dot products in higher dimensional spaces without explicitly mapping into these spaces
\star Consider the map:

$$
\Phi:\left(x_{1}, x_{2}\right) \quad \rightarrow \quad\left(x_{1}^{1}, x_{2}^{2}, x_{1} x_{2}, x_{2} x_{1}\right)
$$

\star Dot products in the feature space \mathcal{H} are the form

$$
\langle\Phi(x), \Phi(y)\rangle=x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2}=\langle x, y\rangle^{2}
$$

\star The kernel is the square of the dot product in the input space
\star So, in general kernels for polynomials the kernel is computed as

$$
k(x, y)=\left\langle\Phi_{d}(x), \Phi_{d}(y)\right\rangle=\langle x, y\rangle^{d}
$$

\star Ordered and unordered polynomial products lead to different maps.

* Multiple occurrences of unordered polynomials are compensated by scaling them with $\sqrt{(d-n+1)!}$, n the number of such occurrences as

$$
\Phi_{2}(x)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
$$

\star Although ordered $\left(C_{d}\right)$ and unordered (Φ_{d}) map into different feature spaces, they are valid instantiations of feature maps for

$$
k(x, y)=\langle x, y\rangle^{d}
$$

True boundary:: Ellipse in the input space

Boundary:: Hyperplane in the feature space

Figure 1: Binary Classification mapped into feature space

Definitions of Kernelogy

Gram Matrix: A function $k: \mathcal{X}^{2} \rightarrow \mathbb{K}$ and patterns $x_{1}, \ldots, x_{m} \in \mathcal{X}$, the $m \times m$ matrix

$$
K_{i j}=k\left(x_{i}, x_{j}\right)
$$

is the Gram matrix or Kernel Matrix of k
PD Matrix: A complex $m \times m$ matrix K satisfying

$$
\sum_{i, j} c_{i} \bar{c}_{j} K_{i j} \geq 0
$$

for all $c_{i} \in \mathbb{C}$ is positive definite.

PD Kernel: A function k on $\mathcal{X} \times \mathcal{X}$ that gives rise to a positive definite Gram matrix is a pd kernel.

Additional Points

\star Kernels can be considered as generalized dot products.
\star Linearity of dot products does not carry over to kernels
\star Cauchy-Schwarz inequality can be extended to kernels as

$$
|k(x, y)|^{2} \leq k(x, x) k(y, y)
$$

Reproducing Kernel Map

$\star k$ a real valued, pd kernel, \mathcal{X} a nonempty set.
\star Define a map from \mathcal{X} into a space of functions mapping \mathcal{X} to \mathbb{R}, denoted as $\mathbb{R}^{\mathcal{X}}:=\{f: \mathcal{X} \rightarrow \mathbb{R}\}$ as

$$
\begin{aligned}
\Phi: & \mathcal{X} \\
& x \rightarrow \mathbb{R}^{\mathcal{X}} \\
& \rightarrow k(., x)
\end{aligned}
$$

$\Phi(x)$ denotes the function that assign the value $k\left(x^{\prime}, x\right)$ to $x^{\prime} \in \mathcal{X}$ i.e., $\Phi(x)()=.k(., x)$

* Each pattern has been turned into a function on domain \mathcal{X}
\star Now the pattern is represented by the similarity to all other points in the input domain.
* To construct a feature space associated with Φ :
- Create a vector space out of the image Φ
- Define a dot product in this space has a strictly pd bilinear form
- See to that it satisfies $k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle$
\star Then this kernel is called Reproducing Kernel and the map is Reproducing Kernel Map
\star It is also possible to define a mapping Φ from \mathcal{X} into a dot product space and obtain a pd kernel.
\star Defines the equivalence of kernels.

Kernel Trick

Given an algorithm, formulated in terms of a pd kernel k, an alternative algorithm can be constructed by replacing k by another pd kernel \tilde{k}
\star After replacement the dot product operates on $\tilde{\Phi}\left(x_{1}\right), \ldots, \tilde{\Phi}\left(x_{1}\right)$ instead of $\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{1}\right)$

- Example: k is a dot product in the input domain
- However, k and \tilde{k} can be nonlinear algorithms
- Caution: Certain algorithm work only subject to additional input conditions on the data
- Hence, not every conceivable pd kernel will make sense.

Reproducing Kernel Hilbert Spaces

$$
\Phi: \mathbb{R}^{N} \rightarrow \mathcal{H}, \quad \mathbf{x} \rightarrow k(\mathbf{x}, .)
$$

\star These functions were defined in dot product spaces
\star Endowing a norm $\|x\|:=\sqrt{\langle x, x\rangle}$, then \mathcal{H} is a RKHS if

- k has the reproducing property

$$
\begin{aligned}
\langle\Phi, k(x, .)\rangle & =\Phi(x), \quad \forall \Phi \in \mathcal{H} \\
\langle k(x, .), k(y, .)\rangle & =k(x, y)
\end{aligned}
$$

- k spans \mathcal{H}

$$
f(x)=\sum_{i} a_{i} k\left(x, x_{i}\right)
$$

Mercer Kernel

* Let k be a symmetric real valued kernel such that

$$
k(x, y)=\sum_{j}^{N_{\mathcal{H}}} \lambda_{j} \psi_{j}(x) \psi_{j}(y)
$$

holds for almost all (x, y)
\star where $\lambda_{j}>0$ the eigen values, ψ_{j} normalized orthogonal eigen functions i.e $\psi_{i} \psi_{j}=\delta_{i j}$
$\star k$ is a Mercer Kernel Map

Empirical Kernel Map

\star For a given set $\left\{z_{1}, \ldots, z_{n}\right\} \subset \mathcal{X}, n \in \mathbb{N}$,

$$
\begin{aligned}
\Phi_{n}: \mathbb{R}^{N} & \rightarrow \mathbb{R}^{n} \\
\left.x \rightarrow k(., x)\right|_{\left\{z_{1}, \ldots z_{n}\right\}} & =\left(k\left(z_{1}, x\right), \ldots k\left(z_{n}, x\right)\right)^{T}
\end{aligned}
$$

is the empirical kernel map wrt $\left\{z_{1}, \ldots z_{n}\right\}$.
\star Evaluation of the kernel map on the training patterns
\star Direct extension of this concept is Kernel PCA map

Examples of kernels

\star Polynomial Kernel

$$
k(x, y)=\langle x, y\rangle^{d}
$$

\star Gaussian RBF kernels

$$
k(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)
$$

\star Sigmoid

$$
k(x, y)=\tanh (\kappa\langle x, y\rangle+\vartheta)
$$

^ Inhomogeneous polynomials

$$
k(x, y)=(\langle x, y\rangle+c)^{d}
$$

Properties

* The above kernels are unitary invariant

$$
k(x, y)=k(\mathcal{U} x, \mathcal{U} y), \text { if } \mathcal{U}^{T}=\mathcal{U}^{-1}
$$

where \mathcal{U} is for instance a rotation
\star RBF kernels are translation invariant

$$
k(x, y)=k\left(x+x_{o}, y+y_{o}\right) \forall x_{o} \in \mathcal{X}
$$

\star Polynomial kernels are invariant under orthogonal transformations of \mathbb{R}^{N} up to a scaling factor

* Gram Matrix of a Gaussian RBF kernel is full rank
- Implies $\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{m}\right)$ are linearly independent
- They span the m dimensional subspace of \mathcal{H}
- RBKs defined on domains of infinite cardinality, with no a priori restriction of training examples, produces an infinite dimension feature space.
- The data is mapped in a way that smooth and simple estimates are possible.

Kernel Selection

* With so many different mappings to choose from, which is the best for a particular application?
\star SVMs can be seen as one framework for comparison of these mappings
* The upper-bound is provided by SLT, which provides an avenue to compare these kernels
\star The question has remained for a long time and cross-validation remains the preferred method for kernel selection

Conclusions

\star Kernels - from the cornerstone of SVM and other Kernel methods
\star Permit the computation of dot products in high-dimensional spaces, using functions defined on pairs of input patterns.
\star Kernel trick allows formation of nonlinear variants of any algorithm cast in terms of dot products.
\star Though, any dot product based algorithm can be kernelized care must be taken to choose the kernel, which until now is only through cross validation.

Problems

\star (2.1 Monomial Features in $\mathbb{R}^{2} \bullet$) Verify (2.9) on page 27
Ł (2.33 Translation of a Dot Product •) Prove (2.79) on page 48
\star (2.35 Polarization Identity \bullet) For any symmetric bilinear form $\langle.,\rangle:. \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, we have,
$\forall x, y \in \mathcal{X}$

$$
\langle x, y\rangle=\frac{1}{4}(\langle x+y, x+y\rangle-\langle x-y, x-y\rangle)
$$

Now consider the spl. case where $\langle.$, . \rangle is an

Euclidean dot product and $\langle x-y, x-y\rangle$ is the squared Euclidean distance between x and y. Discuss why the polarization identity does not imply that the value of the dot product can be recovered from the distances alone. What else does one need?

[^0]: ${ }^{1}$ Only applicable to PD kernels

