Geometric and algebraic interpretation

> T-61.152

Informaatiotekniikan seminaari
Eero Salminen
54750N

LP assumptions

- Given LP is in standard form: $\min c^{\prime} \boldsymbol{x}$
$\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \quad\left(\boldsymbol{A}\right.$ is an $m^{*} n$ matrix and $\left.m<n\right)$ $x \geq 0$
- \boldsymbol{A} has m linearly independent columns \boldsymbol{A}_{j} (A has rank m)

Basic solution

The basis of \mathbf{A} is a linearly independent collection

$$
\beta=\left\{\boldsymbol{A}_{j ;}, \ldots, \boldsymbol{A}_{j_{m}}\right\} \quad \Leftrightarrow \quad \boldsymbol{B}=\left[\boldsymbol{A}_{j_{i}} \ldots \boldsymbol{A}_{j_{m}}\right]=\left[\boldsymbol{A}_{j}\right]
$$

The basic solution \boldsymbol{x} is

$$
\begin{array}{ll}
x_{p}=\left[B^{-1} \boldsymbol{b}\right]_{p} & \text { for } \boldsymbol{A}_{p} \in \beta \\
x_{q}=0 & \text { for } \boldsymbol{A}_{q} \notin \beta
\end{array}
$$

Basic feasible solution

If a basic solution $x \geq 0(x \in F)$, it's a basic feasible solution (bfs).

Some properties of bfs:
-There exists a \boldsymbol{c} such that a bfs \boldsymbol{x} is the unique optimal solution of $\min c^{\prime} \boldsymbol{x}(\boldsymbol{A x}=\boldsymbol{b}, \boldsymbol{x} \geq 0)$

- When F, the feasible points, is not empty and \boldsymbol{A} is of rank m , as least one bfs exists

Subspace

A (linear) subspace S of R^{d} is

$$
\begin{aligned}
& S=\left\{x \in R^{d}: a_{j 1} x_{1}+\ldots+a_{j d} x_{d}=0, j=1, \ldots, m\right\} \\
& \operatorname{Dim}(S)=d-\operatorname{rank}\left(\left[a_{j j}\right]\right)
\end{aligned}
$$

An affine subspace A of R^{d} is

$$
A=\left\{x \in R^{d}: a_{j 1} x_{1}+\ldots+a_{j d} x_{d}=b_{j}, j=1, \ldots, m\right\}
$$

Hyperplane

A hyperplane is an affine subspace of R^{d} of dimension $d-1$, the set of points in

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots a_{d} x_{d}=b
$$

A hyperplane defines 2 halfspaces

$$
a_{1} x_{1}+\ldots+a_{d} x_{d} \geq b \text { and } \leq b
$$

Convex polytope

A (convex) polytope is a bounded intersection of finite number of halfspaces.

A face f of polytope P supported by the hyperplane H is
$f=P \cap H$
A facet $=$ a face of dimension d-1
An edge = a face of dimension 1
A vertex $=a$ face of dimension 0

Geometric views of a polytope

A convex polytope can be viewed in several different ways. The geometrical views are a bit easier to imagine:

- P is the convex hull of a finite set of points, as a polytope is the convex hull of its vertices.
- P is the intersection of k halfspaces

$$
a_{k 1} x_{k 1}+\ldots+a_{k d} x_{k d} \leq b_{k}
$$

as long as the intersection is bounded.

Slack variables

Feasible region F of a LP is $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq 0$. This can also be expressed as

$$
\begin{array}{ll}
x_{i}=b_{i}-\sum_{j=1}^{n-m} a_{i j} x_{j}, & i=n-m+1, \ldots, n \\
x_{j} \geq 0, & j=1, \ldots, n-m
\end{array}
$$

The variables x_{i} are also known as the slack variables.

Algebraic view of a polytope

By removing the slack variables we get the inequalities

$$
\begin{array}{ll}
b_{i}-\sum_{j=1}^{n-m} a_{i j} x_{j} \geq 0, & i=n-m+1, \ldots, n \\
x_{j} \geq 0, & j=1, \ldots, n-m
\end{array}
$$

These also define the intersection of n halfspaces, hence define a polytope P in R^{n-m}.

Polytope and the feasible set

Let P be a polytope defined by the n halfspaces

$$
h_{i, 1} x_{1}+\ldots+h_{i, n-m} x_{n-m}+g_{i}<0 \quad i=1, \ldots, n
$$

Any point $\boldsymbol{x}_{p}=\left(x_{1}, \ldots, x_{n-m}\right) \in P$ can be transformed to $x_{f}=\left(x_{1}, \ldots, x_{n}\right) \in F$ by defining:

$$
x_{i}=-g_{i}-\sum_{j=1}^{n-m} h_{i, j} x_{j} \quad i=n-m+1, \ldots, n
$$

Also any \boldsymbol{x}_{f} can be transformed to \boldsymbol{x}_{p} by truncating the last m coordinates.

Vertices of a polytope

Let P be a polytope, F the feasible set of the corresponding LP and $x_{\rho}=\left(x_{1}, \ldots, x_{m-n}\right) \in P$.
Then the following are equivalent:

- Point \boldsymbol{x}_{p} is a vertex of P
- If $\boldsymbol{x}_{p}=\alpha \boldsymbol{x}_{p^{\prime}}+(1-\alpha) \boldsymbol{x}_{p^{\prime \prime}}$ with $\boldsymbol{x}_{p^{\prime}, \boldsymbol{x}_{p^{\prime}} \in P \text { and } 0<\alpha<1 \text {, }}^{\text {, }}$ then $\boldsymbol{x}_{\rho}=\boldsymbol{x}_{\rho^{\prime}}=\boldsymbol{x}_{\rho^{\prime \prime}}$
- The corresponding vector \boldsymbol{x}_{f} is a bfs of F

Optimality

1. For any instance of LP an optimal bfs exists, i.e. there is an optimal vertex of P.)

Proof: When \boldsymbol{x}_{o} is the optimal solution and vertex j has the lowest cost $\boldsymbol{d}^{\top} \boldsymbol{x}_{j}$

$$
\boldsymbol{d}^{\boldsymbol{T}} \boldsymbol{x}_{\boldsymbol{o}}=\sum_{i=1}^{N} \alpha_{i} \boldsymbol{d}^{\boldsymbol{T}} \boldsymbol{x}_{\boldsymbol{i}} \geq \boldsymbol{d}^{\boldsymbol{T}} \boldsymbol{x}_{\boldsymbol{j}} \sum_{i=1}^{N} \alpha_{i}=\boldsymbol{d}^{\boldsymbol{T}} \boldsymbol{x}_{\boldsymbol{j}}
$$

2. If q bfs's of F or q vertices of P are optimal, their convex combinations are optimal.

Summary

- LP can be though of as a convex polytope P.
- LP has at least one optimal bfs.
- The optimal bfs is a vertex of the polytope P.

What does this mean?

- The optimal solution for any LP can be found at the vertices of the corresponding polytope P.
- LP can be solved in a finite number of steps!

