Geometric and algebraic interpretation

T-61.152 Informaatiotekniikan seminaari

Eero Salminen 54750N

LP assumptions

- Given LP is in standard form: *min c'x Ax* = *b* (*A* is an *m* * *n* matrix and *m* < *n*) *x* ≥ 0
- A has m linearly independent columns A_j
 (A has rank m)

Basic solution

The *basis* of **A** is a linearly independent collection

 $\beta = \{\mathbf{A}_{j_i}, \dots, \mathbf{A}_{j_m}\} \quad \Leftrightarrow \quad \mathbf{B} = [\mathbf{A}_{j_i} \dots \mathbf{A}_{j_m}] = [\mathbf{A}_{j_i}]$

The basic solution \mathbf{x} is $x_p = [\mathbf{B}^{-1}\mathbf{b}]_p$ for $\mathbf{A}_p \in \beta$ $x_q = 0$ for $\mathbf{A}_q \notin \beta$

Basic feasible solution

If a basic solution $x \ge 0$ ($x \in F$), it's a basic feasible solution (bfs).

Some properties of bfs:

- There exists a c such that a bfs x is the unique optimal solution of min c'x (Ax=b, $x \ge 0$)
- When *F*, the feasible points, is not empty and *A* is of rank m, as least one bfs exists

Subspace

A (linear) subspace S of
$$R^d$$
 is
 $S = \{\mathbf{x} \in R^d : a_{j1}x_1 + ... + a_{jd}x_d = 0, j = 1,...,m\}$
 $Dim(S) = d - rank([a_{jj}])$

An affine subspace A of R^d is $A = \{ \mathbf{x} \in R^d : a_{j1}x_1 + \dots + a_{jd}x_d = b_j, j = 1, \dots, m \}$

Hyperplane

A hyperplane is an affine subspace of R^d of dimension d-1, the set of points in $a_1x_1 + a_2x_2 + \dots a_dx_d = b$

A hyperplane defines 2 *halfspaces* $a_1x_1 + ... + a_dx_d \ge b$ and $\le b$

Convex polytope

A (convex) *polytope* is a bounded intersection of finite number of halfspaces.

A face f of polytope Psupported by the hyperplane H is $f = P \cap H$

A facet = a face of dimension d-1 An edge = a face of dimension 1 A vertex = a face of dimension 0

Geometric views of a polytope

A convex polytope can be viewed in several different ways. The geometrical views are a bit easier to imagine:

- P is the convex hull of a finite set of points, as a polytope is the convex hull of its vertices.
- P is the intersection of k halfspaces $a_{k1}x_{k1}+...+a_{kd}x_{kd} \leq b_k$ as long as the intersection is bounded.

Slack variables

Feasible region F of a LP is Ax=b, $x \ge 0$. This can also be expressed as

$$x_{i} = b_{i} - \sum_{j=1}^{n-m} a_{ij} x_{j}, \quad i = n-m+1, \dots, n$$

$$x_{j} \ge 0, \qquad j = 1, \dots, n-m$$

The variables x_i are also known as the *slack variables*.

Algebraic view of a polytope

By removing the slack variables we get the inequalities

$$b_i - \sum_{j=1}^{n-m} a_{ij} x_j \ge 0, \quad i = n - m + 1, \dots, n$$

 $x_j \ge 0, \qquad j = 1, \dots, n - m$

These also define the intersection of n halfspaces, hence define a polytope P in R^{n-m} .

Polytope and the feasible set

Let P be a polytope defined by the *n* halfspaces $h_{i,1}x_1 + \dots + h_{i,n-m}x_{n-m} + g_i < 0$ $i=1,\dots,n$

Any point $\mathbf{x}_p = (x_1, \dots, x_{n-m}) \in P$ can be transformed to $\mathbf{x}_f = (x_1, \dots, x_n) \in F$ by defining:

$$x_i = -g_i - \sum_{j=1}^{n-m} h_{i,j} x_j$$
 $i = n-m+1, ..., n$

Also any x_f can be transformed to x_p by truncating the last *m* coordinates.

Vertices of a polytope

Let *P* be a polytope, *F* the feasible set of the corresponding LP and $\mathbf{x}_p = (x_1, \dots, x_{m-n}) \in P$. Then the following are equivalent:

- Point \boldsymbol{x}_p is a vertex of P
- If $\mathbf{x}_p = \alpha \mathbf{x}_{p'} + (1 \alpha) \mathbf{x}_{p''}$ with $\mathbf{x}_{p'}, \mathbf{x}_{p''} \in P$ and $0 < \alpha < 1$, then $\mathbf{x}_p = \mathbf{x}_{p'} = \mathbf{x}_{p''}$
- The corresponding vector \mathbf{x}_f is a bfs of F

Optimality

1. For any instance of LP an optimal bfs exists, i.e. there is an optimal vertex of P.)

Proof: When \mathbf{x}_o is the optimal solution and vertex j has the lowest cost $\mathbf{d}^T \mathbf{x}_i$

$$\boldsymbol{d}^T \boldsymbol{x}_{\boldsymbol{o}} = \sum_{i=1}^{N} \alpha_i \boldsymbol{d}^T \boldsymbol{x}_i \ge \boldsymbol{d}^T \boldsymbol{x}_j \sum_{i=1}^{N} \alpha_i = \boldsymbol{d}^T \boldsymbol{x}_j$$

2. If *q* bfs's of F or *q* vertices of P are optimal, their convex combinations are optimal.

Summary

- LP can be though of as a convex polytope P.
- LP has at least one optimal bfs.
- The optimal bfs is a vertex of the polytope P.

What does this mean?

- The optimal solution for any LP can be found at the vertices of the corresponding polytope P.
- LP can be solved in a finite number of steps!