T-61.140 Signal Processing Systems

1st mid term exam, Monday 8th March 2004, 15-18, hall M.
You are NOT ALLOWED to use any mathematical reference book or calculator. Some tables given on additional paper. Show intermediate steps in Problems 2-4.

1) (6p) Statements, answer either TRUE (T) or FALSE (F). Correct answer +1 point, a wrong -1 point. Reply to as many statements as you want. However, the maximum points of the problem is six, and the minimum 0 points. No explanations needed.

a) A sequence $x[n]=e^{3 \pi j n / 5-j \pi / 4}+e^{-3 \pi j n / 5+j \pi / 4}$ can be represented with a sine function: $x[n]=2 \sin (3 \pi n / 5+\pi / 4)$.
b) A sequence $x[n]=\sum_{k=-\infty}^{+\infty}(\delta[n-3 k]-\delta[n+2 k-1])$ is periodic and its fundamental period is $N_{0}=6$.
c) The fundamental period T_{0} of the signal $x(t)=\cos (10 \pi t)+\sin (20 \pi t)$ is 5 Hz .
d) The output $y[n]$ of a causal LTI system is zero for all $n<0$.
e) Consider a LTI system, whose impulse response is $h[n]=0.5^{n} u[1-n]$.

Statement: Filter is stable.
f) $y(t)=2 x(t-\pi)$ is a causal LTI system.
g) It was shown in Matlab exercises that a median filter can efficiently remove random white and black spots from a gray-scale picture. This means that high-frequency noise is reduced. M-point median filter sorts M gray-scale values $(x[n], x[n-1], \ldots, x[n-$ $M+1]$) in ascending order and picks up the middle one.
Statement: The median filter is a LTI system of lowpass type.
h) The convolution of sequences $x[n]=2004(\delta[n-2004]+\delta[n-2005])$ and
$h[n]=\delta[n]+\delta[n+1]$ is
$y[n]=h[n] * x[n]=2004 \delta[n-2004]+4008 \delta[n-2005]+2004 \delta[n-2006]$.
i) The inverse transform of the spectrum $Y(j \omega)=e^{-2 j \omega} /(1+0.5 j \omega)$ is $y(t)=2 e^{-2(t-2)} u(t-2)$.
2) (6p) Draw a flow (block) diagram and write down the difference equation of the recursive, feedback IIR-system, whose impulse response is of infinite length

$$
h[n]=4 \delta[n]-\delta[n-1]+0.5 \delta[n-2]-0.25 \delta[n-3]+0.125 \delta[n-4]-0.0625 \delta[n-5]+\ldots
$$

There are two or three multipliers (triangle), one or two delays (memory registers, a square with D), and one or two sum elements (circle with +) in the diagram depending on the realization.
3) (6p) Consider a linear, time-invariant, stable and causal discrete-time system, where the input $x[n]$ and output $y[n]$ are:

n	$x[n]$	$y[n]$
0	1	2
1	-2	1
2	0	$?$
3	1	$?$
4	2	$?$
5	0	$?$

a) (4p) Define the impulse response $h[n]$ of the system using $x[n]$ and $y[n]$, and conditions that initial values of system are zero and it is form (a, b, c and d constants):

$$
h[n]= \begin{cases}a, & \text { when } n<0 \\ b, & \text { when } n=0 \\ c, & \text { when } n=1 \\ d, & \text { when } n>1\end{cases}
$$

b) (2p) Calculate the missing values of $y[n]$.
4) (6p) A periodic signal $x(t)$ with fundamental period $T_{0}=100$ seconds is defined:

$$
x(t)= \begin{cases}0, & 0 \leq t<40 \\ 2, & 40 \leq t<50 \\ 4, & 50 \leq t<60 \\ 2, & 60 \leq t<100\end{cases}
$$

a) (1p) Draw the signal in range $-20<t<120$ seconds.
b) (1p) What is the fundamental angular frequency $\Omega_{0} \mathrm{rad} / \mathrm{s}$?
c) (3p) Compute the Fourier-coefficients a_{k}.
d) (1p) Signal $x(t)$ is approximated by the signal $x_{a M}(t)$, which has only a part (finite number) of Fourier-series terms:

$$
x_{a M}(t)=\sum_{k=-M}^{M} a_{k} e^{j k\left(2 \pi / T_{0}\right) t}
$$

Draw the approximating signal $x_{a 0}(t)$, which has only the coefficient a_{0}, into the same figure as in (a).

