The Discrete-Time Fourier Transform

The Discrete-Time Fourier Transform

- The Fourier series representation of a discrete-time periodic signal is a finite series, as opposed to the infinite series representation required for the continuous-time periodic signals
- · The discrete-time Fourier analysis is discussed
- The differences between continuous-time and discrete-time Fourier transforms are considered (similar to those between CT and DT Fourier series)

Tik-61.140 / Chapter 5

© Oli Si

Development of the Discrete-Time Fourier Transform

- An aperiodic signal x(t) was earlier (Chapter 4) represented by first constructing a periodic signal x_p(t) that was equal to x(t) over one period
- The Fourier series representation for $x_p(t)$ converged to the Fourier transform representation for x(t)
- The similar procedure is applied to discrete-time signals in order to develop the Fourier transform representation for discrete-time aperiodic sequences

© Olli Simula

Tik-61.140 / Chapter 5

Representation of Aperiodic Signals

Defining the function

© Oli Simul

$$X(e^{j\mathbf{W}}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\mathbf{W}n}$$

we see that the coefficients a_k are proportional to samples of $X(e^{jw})$

$$a_{k} = \frac{1}{N} X(e^{jk w_{0}}) \quad \text{where } \boldsymbol{w}_{0} = 2\boldsymbol{p} / N$$

• We can now express $x_p[n]$ in terms of $X(e^{jw})$ as

$$x_p[n] = \sum_{k = \{N\}} \frac{1}{N} X(e^{jk\mathbf{w}_0}) e^{jk\mathbf{w}_0 t}$$

Tik-61.140 / Chapter 5

6

2

Representation of Aperiodic Signals

• Equivalently, since 2 p/N=w₀

© Olli Simula

$$x_p[n] = \frac{1}{2\boldsymbol{p}} \sum_{k \in \{N\}} X(e^{jk\boldsymbol{w}_0}) e^{jk\boldsymbol{w}_0 \boldsymbol{n}} \boldsymbol{w}_0$$

- As N increases w_0 decreases, and as N approaches infinity, and the summation passes to an integral
- As N approaches infinity, $x_n[n] \rightarrow x[n]$ and the above equation becomes

$$x_p[n] = \frac{1}{2p} \int_{2p} X(e^{jw}) e^{jwn} dw$$

Tik -61.140 / Chapter 5

The Discrete-Time Fourier
Transform
$$x[n] = \frac{1}{2p} \int_{2p} X(e^{jw}) e^{jwn} dw$$
$$X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-jwn}$$

7

10

Properties of the Discrete-Time Fourier Transform

 $h[n] \neq 0$, for n < 0

its oscillatory behavior is not desired

32

is not causal and

Summary of Fourier Series and Transform Properties

	Continuous time		Discrete time	
	Time domain	Frequency domain	Time domain	Frequency domain
Fourier Series	$\begin{array}{l} x(t) = \\ \sum_{k=-\infty}^{+\infty} a_k e^{jkw_k t} \end{array}$	$a_k = \frac{1}{T_0}\int_{T_0} x(t)e^{-jk\omega_0 t}$		$\begin{array}{l} a_k = \\ \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{-jk(2\pi/N)} \end{array}$
	continuous time periodic in time	discrete frequency aperiodic in frequency	discrete time duality	> discrete frequency periodic in frequency
Fourier Transform	$\begin{array}{l} x(t) = \\ \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \end{array}$	$\begin{array}{c} X(j\omega) = \\ \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega})e^{j\omega\pi} \end{array}$	$\begin{array}{l} x[n] = \\ \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt \end{array}$	$\begin{array}{l} X(e^{j\omega)} = \\ \sum_{n=-\omega}^{+\infty} x[n]e^{-j\omega n} \end{array}$
	continuous time duality	> continuous frequency aperiodic in frequency	discrete time aperiodic in time	continuous frequency periodic in frequency
Off Simula	Tik-61.140 / Chapter 5			38

Example 5.18: First Order IIR Filter • Consider the first order recursive or infinite impulse response $\mu[n] - a\gamma[n-1] = \chi[n], \text{ with } |a| < 1$ • The frequency response of this system is $H(e^{jW}) = \frac{1}{1-ae^{-jW}}$ • The impulse response is calculated earlier: $h[n] = a^n u[n]$

