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The Discrete-Time Fourier Transform

• The Fourier series representation of a 
discrete-time periodic signal is a finite series, 
as opposed to the infinite series 
representation required for the continuous-
time periodic signals

• The discrete-time Fourier analysis is discussed
• The differences between continuous-time and 

discrete-time Fourier transforms are considered 
(similar to those between CT and DT Fourier 
series)
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Development of the Discrete-Time 
Fourier Transform

• An aperiodic signal x(t) was earlier (Chapter 4) 
represented by first constructing a periodic signal 
xp(t) that was equal to x(t) over one period

• The Fourier series representation for xp(t) converged 
to the Fourier transform representation for x(t)

• The similar procedure is applied to discrete-time 
signals in order to develop the Fourier transform 
representation for discrete-time aperiodic sequences
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• Consider a general sequence x[n] that is of finite duration, i.e., for 
some integers N1 and N2, x[n] = 0 outside the range -N1 < n < N2

• A periodic signal xp[n] is constructed for which x[n] is one period
• As N approaches infinity, xp[n] = x[n] for any finite value n

Representation of Aperiodic Signals
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• Let us examine the effect on the Fourier series representation o f xp[n]
• Fourier series:

Representation of Aperiodic Signals
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• Since x[n]=xp[n] over a period that includes the interval -N1<n<N2 , 
it is convenient to choose the interval of summation to include this 
interval, so that xp[n] can be replaced by x[n] in the summation 
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• Defining the function

Representation of Aperiodic Signals

we see that the coefficients ak are proportional to samples of  X(ejω)
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• We can now express xp[n] in terms of X(ejω) as
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• Equivalently, since 2π/N=ω0

Representation of Aperiodic Signals

• As N increases ω0 decreases, and as N approaches infinity, and the
summation passes to an integral

• As N approaches infinity, xp[n] -> x[n] and the above equation 
becomes
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The DiscreteThe Discrete--Time Fourier Time Fourier 
TransformTransform
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The Discrete-Time Fourier Transform

• The discrete -time Fourier transform is 
periodic and there is finite interval of 
integration in the synthesis equation

• Discrete -time complex exponentials that 
differ in frequency by a multiple of 2π are 
identical

• Periodicity of ejωn : 
ω = 0 and  ω = 2π yield the same signal

 Olli Simula Tik-61.140 / Chapter 5 10

The Discrete-Time Fourier Transform

• Signals at frequencies 
near ω=0 and any 
even multiple of of 
2π are slowly varying

 Olli Simula

• High frequencies 
in discrete-time 
are the values of ω
near odd multiples 
of π
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• Consider the signal

Example 5.1: Exponential Sequences
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• For a > 0, the system corresponds to a lowpass filter
• For a < 0, the system corresponds to a highpass filter
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• The Fourier transform is given by
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Example 5.1: Lowpass Filter, a > 0
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Example 5.1: Highpass Filter, a < 0
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• Consider the signal

Example 5.2:
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Example 5.2: 

Signal x[n]=a|n| and its Fourier transform
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• Consider the rectangular pulse

Example 5.3: Rectangular Pulse

• The function is the discrete-time counterpart of the sinc function
• This function, however, is periodic with period 2π, 

whereas the sinc function is aperiodic
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Example 5.3: 
Rectangular Pulse and Its Fourier Transform
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• Let x[n] be a unit impulse

Example 5.4: Unit Impulse

• The analysis equation gives
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• The unit impulse has a Fourier transform representation consisting of
equal contributions at all frequencies

• We obtain now
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• The frequency of the oscillations in the approximation increases 
as W is increased

• The amplitude of these oscillations decreases relativeto the magnitude
of x[0] as W is increased, and the oscillations disappear for W =π
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Example 5.4: Approximation of the Unit Sample
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• Consider the signal 

The Fourier Transform for Periodic Signals

• In continuos-time, the Fourier transform of ejω0t was interpreted 
as an impulse at ω = ω0 

• The discrete-time Fourier transform must be periodic in ω with 
period 2π

• Thus, the Fourier transform of x[n] should have impulses at  
ω0 , ω0 +2π, ω0 +4π , etc. , i.e.,
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• Substituting into the synthesis equation 

The Fourier Transform for Periodic Signals

• Any interval of length 2π includes exactly one impulse, then if 
the interval of integration chosen includes the impulse at ω0+ 2 πr, 
we have
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• Now, consider a periodic sequence x[n] with period N and with 
the Fourier series 

The Fourier Transform for Periodic Signals

• The Fourier transform is
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• The Fourier transform of a periodic signal can be directly 
constructed from its Fourier coefficients

• This can be verified by noting that x[n] is the linear combination of 
complex exponentials and so is the Fourier transform
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• x[n] is a linear 
combination of 
signals with

The Fourier Transform for Periodic Signals
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• Consider the periodic signal

Example 5.5: Periodic (Sinusoidal) Signal
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Consider the discrete-time counterpart of the periodic impulse train
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Example 5.6: Periodic Impulse Train
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• Periodicity:

Properties of the Discrete-Time Fourier Transform
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• Let kbe a positive integer, and define the signal 

Time Expansion

• For k=3, x(k)[n] is obtained 
fromx[n] by placing k-1
zeros between successive 
values of the original signal

• Intuitively, we can thinkof 
x(k)[n] as a slowed-down
version of x[n] 
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• Since x(k)[n] equals 0 unless n is a multipleof k, i.e., unless n=rk, 
the Fourier transformof x(k)[n] can be given as

Time Expansion
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• Furthermore, since x(k)[rk]=x[r], the Fourier transform can be written
as
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• Note that bas the 
signal is spread out 
and slowed down in 
time by taking k>1 
its Fourier transform 
is compressed

• The application of the 
time scaling is in 
increasing and 
decreasing the 
sampling rate

Time Expansion
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Convolution Property

Convolution in the time domain corresponds to 
multiplication in the frequency domain

h[n]x[n] y[n]= x[n]*h[n]

In frequency domain:

)()()( ωωω jjj eHeXeY =

• The frequency response H(ejω) captures the change in complex 
amplitude of the Fourier transform of the input at frequency ω
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• Impulse response:

Example 5.11: Delay on n0 Samples
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• Thus, for any input x[n] with the Fourier transform X(ejω), 
the Fourier transform of the output is 
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• Frequency response:
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Example 5.12: Ideal Lowpass Filter
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• The impulse response 
is a sinc function 
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• The impulse response
is not causal and 
its oscillatory behavior 
is not desired
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Example 5.14: 
Ideal Bandstop Filter Based on Ideal Lowpass
Filters and the Frequency Shifting Property
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Example 5.14: Ideal bandstop filter based on ideal lowpass
filters and the frequency shifting property
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Example 5.14: continued...
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• Consider a product of two sequences

The Multiplication Property

• The corresponding Fourier transforms: 
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• The bracketed summation is the discrete-time Fourier transform

The Multiplication Property












= ∑

∞+

−∞=

−−−

n

njj enxeX )(
2

)(
2 ][)( θωθω

θ
π

π

θωθω deXeXeY jjj ∫ −=
2

)(
21 )()(

2
1

)(

and we have

This corresponds to a periodic convolution of X1(ejω) and X2(ejω) 
and the integral is evaluated over any interval of length 2π
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Summary of Fourier Series 
and Transform Properties
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• An LTI system with input x[n] and output y[n] is described by

Systems Characterized by Linear 
Constant -Coefficient Difference Equations

• The frequency response of the system, H(ejω), can be determined 
by applying the Fourier transform to both sides of the difference 
equation and using the linearity and time-shifting operations
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• Solving H(ejω) 

Systems Characterized by Linear 
Constant -Coefficient Difference Equations

• The frequency response, H(ejω), is a ratio of polynomials in 
the variable e-jω

• The coefficients ak and bk are the same as in the difference 
equation
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• Consider the first order recursive or infinite impulse response 
(IIR) filter

Example 5.18: First Order IIR Filter
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• Factoring the denominator
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parallel interconnection 
of two 1st order sections
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Example 5.19: Second Order IIR Filter

• The difference equationis 


