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The ContinuousThe Continuous--Time Time 
Fourier TransformFourier Transform
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The Continuous-Time Fourier Transform

• We shall discuss signals that are not 
periodic

• Aperiodic signals in continuous time are 
represented by the Fourier transform

• An aperiodic signal can be viewed as a 
periodic signal with an infinite period

• As the period becomes infinite, the 
frequency components form a continuum 
and the Fourier series becomes an integral
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Representation of Aperiodic Signals
• Revisiting the Fourier series:

– Consider the continuous-time periodic square wave, 
i.e., over one period
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• An alternative representation is as samples of the envelope 
function

Representation of Aperiodic Signals
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• Withω thought as a continuous variable 
the function (2sinωT1)/ω represents the envelope of Tak, 
and ak are the samples

• For fixed T1 the envelope Tak is independent of T
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• The Fourier series 
coefficients and their 
envelope for the 
periodic square wave 
for several values of T
(T1 fixed)

Representation of Aperiodic Signals

a) T = 4T1

b) T = 8T1

c) T = 16T1
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• As T increases, or equivalently, as the fundamental 
frequency ω 0=2π/T decreases, the envelope is sampled 
with a closer and closer spacing

• As T becomes arbitrarily large, the periodic square wave 
approaches a rectangular pulse

• Also the Fourier series coefficients , multiplied by T, 
become more and more closely spaced samples

=> The Fourier series coefficients 
approach the envelope

Representation of Aperiodic Signals
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• The basic idea behind the development is 
that an aperiodic signal is thought as a limit 
of a periodic signal as the period becomes 
arbitrarily large and the limiting behavior of 
the Fourier series is considered 

Representation of Aperiodic Signals
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• Consider a signal x(t) of finite duration

Representation of Aperiodic Signals
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• As we choose the period T to be larger xp(t) is identical to x(t) 
over a longer interval , and as T approaches infinity , xp(t) is 
equal to x(t) for any finite value of t

• We construct a periodic signal xp(t) for which x(t) is one period
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• Let us examine the effect on the Fourier series representation o f xp(t)
• Fourier series:

Representation of Aperiodic Signals
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where ω0=2π/T. 

• Since xp(t)=x(t) for |t|<T/2, and also, since x(t)=0 outside this interval
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• Defining the envelope X(jω) of Tak as

Representation of Aperiodic Signals

we have for the coefficients ak
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• Equivalently, since 2π/T=ω0

Representation of Aperiodic Signals

• As T approaches infinity, xp(t) => x(t) and the above equation 
becomes the representation of x(t) 

• Furthermore, ω0 => 0 as T approaches infinity, and the 
summation passes to an integral
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The Fourier Transform PairThe Fourier Transform Pair
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• X(jω ) is Fourier transform or Fourier integral of x(t), 
i.e., the analysis equation

• The inverse Fourier transform equation is the 
synthesis equation

• For aperiodic signals, the complex exponentials occur 
at a continuum of frequencies

• The transform X(jω ) of an aperiodic signal x(t) is 
commonly referred to as the spectrum of x(t)

Fourier Transform Pair
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• The Fourier transform of a 
causal complex exponential

Example 4.1
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Example 4.4
• The Fourier transform

of a rectangular pulse
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• Consider the signal 
with the Fourier 
transform

Example 4.5

• Using the synthesis 
equation
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• In examples 4.4 and 4.5 the Fourier transform pair 
consists of a function of the form (sinaΘ)/bΘ 
and a rectangular pulse

• In Example 4.4, it is the signal x(t) that is a pulse, 
while in Example 4.5 it is the transform X(jω )

Duality Property of the Fourier Transform

• This is the consequence of the duality propertyof the 
Fourier transform
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• A commonly used precise form of the sinc function is

Sinc functions

πθ
πθθ sin)(sinc =
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Sinc functions

Both of the signals in examples 4.4 and 4.5 can be 
expressed in terms of the sinc functions
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Properties of the Square Pulse and 
Its Fourier Transform (Sinc function)
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• As W increases, X(jω)
becomes broader while
the main peakof x(t) at 
t = 0 becomes higher and 
the width of the first lobe
of x(t) becomes narrower
(|t|<π/W) 

• In the limit, 
x(t) converges to an
impulse as W -> ∝
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• We can construct a Fourier transform of a periodic signal direct ly 
from its Fourier series representation

• The transform consists of a train of impulses in the frequency 
domain, with the areas of the impulses proportional to the Fourier 
series coefficients

• Consider a signal x(t) with a Fourier transform X(jω) that is a single 
impulse of area 2π at ω=ω0

The Fourier Transform of Periodic Signals

• x(t) is obtained from the inverse transform relation
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• More generally, if X(jω) is of the form of a linear combination 
of impulses equally spaced in frequency, i.e., 

The Fourier Transform of Periodic Signals

the inverse transform relation yields
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which corresponds to the Fourier series representation 
of a periodic signal
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Example 4.7:   A Sinusoidal Signal (1)
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Example 4.7:   A Sinusoidal Signal (2)
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Example 4.8: A Periodic Impulse Train
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Fourier series coefficients:
(Calculated in Example 3.8)
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• The Fourier transform of a periodic impulse train in the time 
domain with period T is a periodic impulse train in the 
frequency domain with period 2π/T

• The inverse relationship between the time and the frequency 
domains:
As the spacing between the impulses in the time domain (i.e. 
the period) gets longer, the spacing between the impulses in 
the frequency domain (i.e. the fundamental frequency) gets 
smaller

Properties of the Periodic Impulse Train

The result is very useful in the analysis of 
sampling systems
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• Linearity:

Properties of the Continuous-Time Fourier Transform

)()(,)()( ωω jYtyjXtx FF →←→←

)()()()( ωω jbYjaXtbytax F +→←+

• Time Shifting:

)()()()()()( ωωω jHjXjYthtxty F =→←∗=

• Convolution property:

)()( 00 ωω jXettx tjF −→←−

Fourier transform pairs:

Convolution in the time domain corresponds to 
multiplication in the frequency domain

then)()(If ωjHth F→←
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Convolution Property
• A signal x(t) can be expressed as linear combination of

complex exponentials

 Olli Simula
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• The frequency response is defined as the Fourier transform of 
the impulse responseh(t)

• The Fourier transform of the impulse response (at ω=kω 0) is 
the complex scaling factor that the LTI system applies to
eigenfunction ejkω0t

• Frequency response:
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Convolution Property
• From superposition:
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• Thus, the responseof a linear systemto x(t) is
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Duality Property

• By comparing the Fourier transform and inverse transform 
relations
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we notice that the equations are similar in form (but not quite 
identical)

• This symmetry was also noticed in the examples 4.4 and 4.5, 
i.e., the transform of a square pulse was the sinc function and
vice versa
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Duality Property
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• Frequency response plays an important role in the analysis of 
LTI systems as does the impulse response response
Since the impulse response h(t) completely characterizes 
an LTI system, then so must H(jω )

• The parallel and cascade connections of LTI systems can be 
easily specified using the frequency responses instead of the 
impulse responses

The Frequency Response

• Systems in parallel : )()()()( 2121 ωω jHjHthth F +→←+

• Systems in cascade: )()()()( 2121 ωω jHjHthth F→←∗
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• Duality:
Convolution in the time domain corresponds to multiplication 
in the frequency domain and
Multiplication in the time domain corresponds to convolution 
in the frequency domain 

The Multiplication (or Modulation) Property

[ ])()(
2
1)()()()( ωω
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• Multiplication of one signal by another can be thought of as 
using one signal to scale or modulatethe amplitude of the 
other, and the operation is referred to as amplitude modulation
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• Let s(t) be a signal with the 
spectrum S(jω ) 

• Consider also a signal p(t) with 
the Fourier transform P(jω ) 

Example 4.21: Modulation

ttp 0cos)( ω=
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• The product r(t)= p(t)s(t) 
has the spectrum R(jω) 
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• By multiplying the signal s(t) with a sinusoidal signal, we 
notice that
– The information has been shifted to higher frequencies, 

i.e., to the frequency (ω 0) of the modulating signal p(t) 
– All the information in the original signal s(t) is preserved

Amplitude Modulation

• This fact forms the basis for the sinusoidal amplitude 
modulation systems in communications

• The original signal s(t) can be easily recovered from the
amplitude modulated signal r(t) 
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• Consider the modulated 
signal r(t) of example 
4.21 and let

Example 4.22: Demodulation

)()()( tptrtg =
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• The spectra R(jω ), 
P(jω ), and G(jω ) are 
shown on the right

ttp 0cos)( ω=

where p(t) is again

• The signal s(t) can be recovered from g(t) using a lowpass filter
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Example: Modulation and Demodulation 
in Signal Processing
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)()( txety tj cω= )()( twetf tj cω−=
))(()( cjXjY ωωω −= ))(()( cjWjF ωωω +=
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Spectra of the signals
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a) Spectrumof the original 
signal x(t)

b) Spectrumof the
amplitude-modulated 
signal y(t)

c) Spectrumof the lowpass 
filtered signal w(t)

d) Spectrumof the
demodulated signal, i.e., 
the output signal f(t)


