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Signals and Systems

• Signals are variables that carry 
information

• Systems take signals as inputs and 
produce signals as outputs

The course deals with the passage of 
signals through systems
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Signals
• Signalsdescribe a wide variety of (physical) 

phenomena
• Signals may be represented in many ways
• Information in a signal is contained in a 

pattern of variations of some form, i.e.
– variation of voltages over time in a circuit
– applied force and resulting velocity of a car
– fluctuations of acoustic pressure in speech 

production by human vocal mechanism 
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Examples of Signals

• A simple RC circuit
with source voltage
vs and capacitor
voltage vc

• An automobile responding
to an applied force f from
the engine and to a frac-
tional force ρv proportio-
nal to the velocity v
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Examples of Signals

Example of a 
recording of speech: 
The signal
represents acoustic
pressure variations
as a function of time
for the spoken
words: 
”should we chase”

 Olli Simula T-61.140 / Chapter 1 6

Examples of Signals

A monochromatic picture
 Olli Simula
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Representation of Signals
• Signals are represented mathematically 

as functions of one or more 
independent variables

• We will generally refer the independent 
variable as time

• Two basic types of signals:
– Continuous-time (CT) signals and
– Discrete-time (DT) signals
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Continuous-Time and Discrete-Time Signals

• Symbol t is used to denote the independent 
variable of continuous-time signals 

• Symbol n is used to denote the 
independent variable of discrete-time 
signals 

• Continuous-time signal: x(t)
• Discrete-time signal: x[n]

x[n] is a sequence, defined only for integer 
values of n
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Continuous-Time and Discrete-Time Signals
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Digital Image

• Two-dimensional (digital) signal: 
Intensity is a function of spatial coordinates

 Olli Simula

T-61.140 / Chapter 1 11

Signal Energy and Power

• Signals are directly related to physical 
quantities capturing power and energy 
in a physical system

• Instantaneous power, e.g.,
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where v(t) and i(t) are the voltage and current, 
respectively, across the resistor of resistance R
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Signal Energy and Power

• Total energy expended over the time 
interval t1 < t < t2

• Average power over this time interval
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Signals with Complex Values
• Total energy over time interval t1 < t < t2 of a 

continuous-time signal x(t)
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where |x| is the magnitude of the (possibly 
complex) number x

• Similarly, the total energy of a discrete-time 
signal x[n] over time interval t1 < t < t2 is
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Total Energy over Infinite Time Interval

• In many systems we are interested in examining 
power and energy in signals over infinite time 
interval
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Total Power over Infinite T ime Interval

• The time-averaged power over infinite time 
interval is defined as
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Three Important C lasses of Signals 1(3)

• Signals with finite total energy, 
Such a signal must have zero average power
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• Example: A signal that takes the value 1 for 
0< t< 1 and 0 otherwise. 
In this case
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Three Important C lasses of Signals 2(3)
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• Signals with finite average power P∞

• If 0>∞P then, of necessity, ∞=∞E

• If there is nonzero average energy per unit time 
(i.e. nonzero power) , then integrating or summing 
this over an infinite time interval yields an infinite 
amount of energy

• Example: Constant signal x[n] = 4 has infinite 
energy, but average power 16=∞P
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Three Important C lasses of Signals 3(3)

• There are also signals for which 
neither nor are infiniteP∞ E∞
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• A simple example is the signal x(t) = t
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Transformations of the Independent
Variable

• Time shift: x[n] = x[n-n0] 
• Time reversal: x[-n] obtained from x[n]
• Time scaling: x(t); x(2t); x(t/2)

• Transformation: x(t) -> x(αt + β)
preserves the shape of x(t) ; 

– linear stretching i f |α|  < 1 or
– linear compression if |α|  > 1 
– time reversal ifα < 0 
– time shift if β is nonzero
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Time-Shift of a Discrete-Time Signal

• Original
sequence
x[n]

• Delayed
sequence
x[n-n0]
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Time-Reversal of a Discrete-Time Signal
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Time-Scaling of a Continuous-Time Signal
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Examples of Operations
Signal x(t)

 Olli Simula

Advance x(t+1)
(shift to the left)

Reversed version of 
x(t+1):  x(-t+1)

Compressed version of 
x(t):  x((3/2)t)

Linearlycompressed and 
advanced signal: x((3/2)t+1)
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Periodic Signals

• A signal x(t) is periodic with period T if
x(t) = x(t+T)

for all values of t
• The fundamental period T0 of x(t) is the 

smallest positive value of T for which the 
above equality holds

• A signal x(t) that is not periodic is referred 
to as an aperiodic signal

 Olli Simula
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Examples of Periodic Signals

 Olli Simula
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Even and Odd Signals

• Continuous and discrete even signals: 

x(-t) = x(t)  or x[-n] = x[n]

• Continuous and discrete odd signals:

x(-t) = -x(t)  or x[-n] = -x[n]

• An odd signal must be necessarily zero 
at t = 0  or n = 0
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Examples of Even and Odd Signals
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Even-Odd Decomposition
of a Signal

• Even part of x(t):

Ev{x(t)} = [x(t)+x(-t)] / 2

• Odd part of x(t):

Od {x(t)} = [x(t)-x(-t)] / 2
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Continuous-Time Complex Exponential
and Sinusoidal Signals

• Complex exponential signal: x(t) = C eat

where C and a are in general complex numbers
• Real exponential signals: C and a are real

 Olli Simula

Growing exponential: a>0 Decaying exponential: a<0
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Periodic Complex Exponential and 
Sinusoidal Signals

Number a is purely imaginary: 

 Olli Simula

tjetx 0)( ω=

x(t) is periodic with period T :
)(00 Ttjtj ee += ωω

Since TjtjTtj eee 000 )( ωωω =+

It follows that for periodicity, we must have 10 =Tje ω

If ω 0=0 the x(t)=1 which is periodic for any value of T.
If ω 0 is nonzero , then the fundamental period T0 of x(t) is 
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Periodic Complex Exponential and 
Sinusoidal Signals

• A signal closelyrelated to the periodic complex
exponential is the sinusoidal signal

 Olli Simula

)cos()( 0 φω += tAtx

• It is common to write 00 2 fπω =

f0 has units of cycles per 
second or Hertz (Hz)

ω 0 has units of radians
per second
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Sinusoidal Signal

• Fundamental period: T0

• Fundamental frequency:  
ω 0=1/T0
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• Illustration:
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Discrete-Time Complex Exponential Signals
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Sinusoidal Signals (Sequences)
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General Complex Exponential Signals
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PeriodicityPeriodicity PropertiesProperties of of DiscreteDiscrete--TimeTime
ComplexComplex ExponentialsExponentials

• Continuous-time exp(jω 0t): 
1. Increasing ω0 increases the rate of oscillation
2. exp(jω0t) is periodic for any value of ω0
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• ConsiderDT complex exponential with frequency ω 0+2π: 
njnjnjnj eeee 000 2)2( ωπωπω ==+

• The exponential at frequencyω 0+2π is the same as that of 
frequency ω 0

• In CT case, the exponential signalsexp(jω 0t) are all
distinct for distinct values of ω 0
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Periodicity Properties of Discrete-Time
Complex Exponentials
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• In DT case, the signalsare not distinct, as the signal
with frequency ω 0 is identical to the signals to the 
signalswith frequenciesω 0 + 2π, ω 0 + 4π etc.

• Considering complex exponentialswe need only
consider a frequency interval of length 2π, i.e.,

πωππω <≤<≤ 00 or20 -
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DT Sinusoidal Sequences
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The Unit Impulse
and 

the Unit Step Functions
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Some Basic Sequences
• Unit sample sequence

• Unit step sequence
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Relations between Basic Sequences

• Unit sample and unit step sequences are 
related as follows:

∑
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=
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• The above relations can be implemented with 
simple computational structures consisting of 
basic arithmetic operations
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Relations between Basic Sequences

• The unit sample is the first difference of the 
unit step:
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Relations between Basic Sequences
• Unit step is the running sum of the unit step:

∑
−∞=

=
n

m

mn ][][ δµ ][]1[][][
1

nnnm
n

m

δµδδ +−=+= ∑
−

−∞=

+

D

][nµ

]1[ −nµ

][nδ

Realization

T-61.140 / Chapter 1 44

Relations between Basic Sequences
• By changing the variable of summation in the running 

sum from m to k=n-m, the discrete-time unit step can be 
written in terms of the unit sample as

∑

∑
∞

=

∞=

−=

−=

0

0

][

][][

k

k

kn

knn

δ

δµ

T-61.140 / Chapter 1 45

Continuous-Time and 
Discrete-Time Systems

• A system can be viewed as a process in 
which input signals are transformed by the 
system resulting in other signals as outputs

Continuous-time
system

x(t) y(t)

Discrete-time
systemx[n] y[n]
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Examples

• Example 1.8: An RC circuit
• Example 1.9: A forces affecting the car
• Example 1.10: A balance in a bank account
• Example 1.11: Digital simulation of the 

differential equation 
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Mathematical Descriptions of Systems

• Classes of systems that have two important 
characteristics:
1) The systems have properties and structures 

that can be exploited to gain insight into their 
behavior and to develop effective tools for 
their analysis

2) Many systems of practical importance can 
be accurately modeled using these systems

Tools are developed for a particular class of 
systems referred to as

linear and time-invariant systems
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Interconnections of Systems
• Series or cascade interconnection

System 1 OutputSystem 2Input

+
System 2

System 1
OutputInput

• Parallel interconnection
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Interconnections of Systems
• Combination of parallel and cascade 

interconnections

• Feedback interconnection

System 1
Output

System 2
Input

+ System 4
System 3

+

System 2

System 1 OutputInput
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Basic System Properties

• Systems with and without memory
• Invertibility and inverse systems
• Causality
• Stability
• Time invariance
• Linearity
• Convolution

 Olli Simula
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Memoryless Systems

• Output for each value of the independent 
variable at a given time is dependent only 
on the input at the same time

:Example ( )22 ][][2][ nxnxny −=

 Olli Simula T-61.140 / Chapter 1 52

Identity System

• An identity system is a simple memoryless
system whose output is identical to its input

)()(: txtytimeContinuous =−

][][: nxnytimeDiscrete =−
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Accumulator

• An accumulator is a discrete-time system 
with memory

∑
−∞=

=
n

k

kxny ][][
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Delay

• The output is the delayed version of the input
• Realization using a memory location or register 

with delay T

]1[][ −= nxny

T][nx ]1[ −nx
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Arbitrary Delay

• An arbitrary delay of k time instants can be 
realized using a shift register of length k

][][ knxny −=

T][nx ][ knx −T T
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Accumulator or Running Sum

• The accumulator must remember the 
running sum of previous input values to 
obtain the output at current time n
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Invertible Systems

• If a system is invertible, then an inverse system 
exists that when cascaded with the original 
system yields an output w[n] equal to input x[n]

][ny
][][ nxnw =System Inverse

system
][nx
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Invertible Systems

• Accumulator is an invertible discrete-
time system

][nu
][nδSystem Inverse

system
][nδ
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Causality

• A system is causal if the output at any time 
depends only on the values of the input at 
the same time and in the past

• Example:
Accumulator and delay are causal systems

• All memoryless systems are causal
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Noncausality

• A system is noncausal if the output at any 
time depends also on the future values of 
the input

• Noncausal systems are physically not 
realizable

]1[][][: +−= nxnxnyExample

 Olli Simula
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Noncausality

• A noncausal averaging filter
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• The filter can be realized with a delay of M 
samples
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Stability

• Informally, a system is stable if small inputs 
lead to responses that do not diverge

)(ty
)(tx

)(ty

)(tx

Pendulum Inverted pendulum
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Time Invariance
• A system is time invariant if a time shift in 

the input signal results in an identical time 
shift in the output signal

( )][][ nxTny =

• The system properties do not change with
time

( )][][ 00 nnxTnny −=−
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Time Invariance

• A time invariant continuous-time system

[ ])(sin)( txty =

• A time variant discrete-time system

][][ nnxny =
Coefficient n is changing with time
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Linearity

• A linear system is a system that possesses 
the important property of superposition

Additivity:
The response to  x1(t)+x2(t) is  y1(t)+y2(t)

Scaling or homogeneity:
The response to  ax1(t)  is  ay1(t)
where a is any complex constant
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Linearity

• Combining the two properties of 
superposition into a single statement

Discrete-time:

where a and b are any complexconstants

][][][][ 2121 nbynaynbxnax +→+

The superposition property holds for linear
systems in continuous and discrete time

 Olli Simula
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Linearity

][][ 21 nbynay +

a
][1 nax

+

][1 nx
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Basic Operations on Sequences

• Addition:

• Multiplication:

• Unit delay:

][nx ][nax
a

DD][nx ]1[ −nx

++
][1 nx

][2 nx
][][ 21 nxnx +
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Arbitrary Sequence

• An arbitrary sequence x[n] can be expressed  
as a superposition of scaled versions of 
shifted unit impulses, δ[n-k]

-7   -6   -5  -4   -3   -2    -1    0    1    2    3   4     5     6    7

x[n]

n
x[4]

x[1]x[-3]
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Arbitrary Sequence

-7   -6   -5  -4   -3   -2    -1    0    1    2    3   4     5     6    7

x[n]

n

x[4]

x[1]x[-3]

]3[]3[ +− nx δ ]1[]1[ −nx δ ]4[]4[ −nx δ=][nx + -

∑
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−∞=

−=
k

knkxnx ][][][ δ• In general:
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Convolution

• x[n] is represented as a superposition of scaled 
versions of shifted unit impulses, δ[n-k]

• Linearity: The response of a linear system to x[n] 
will be the superposition of the scaled responses of 
the system to each of these shifted impulses

• Time invariance: The responses of a time-invariant 
system to time-shifted unit impulses are the time-
shifted versions of one another
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Convolution

• The unit impulse response of a system 
is h[n]

T(  ))(nδ )(nh

 Olli Simula



Tik-61.140 Signal Processing Systems Spring 2001

Chapter 1 / O. Simula 13

T-61.140 / Chapter 1 73

Convolution

( )][][ nxTny = 
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