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Quantitative proteomics
background

Shortcomings in 2D gel based methods:
poor reproducibility, biased for the most abundant proteins,...

Mass spectrometry (MS) based quantitative proteomics
MS is inherently not quantitative!
physico-chemical properties affect the response

Absolute vs relative quantification

Mass tagging
metabolic labelling
Isotope tagging
enzymatic labelling
labelled peptide standards

Label-free quantification approaches



MS based quantification
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Label-free approaches

e Comparison of two or more experiments:
1) comparison of direct MS signal intensity of any
given peptide
2) comparison of a number of acquired fragment
spectra matching to a peptide/protein = spectral counting



Quantitative proteomics and transcriptomics of
anaerobic and aerobic yeast cultures reveals post-

transcriptional regulation of key cellular processes
de Groot, M., Daran-Lapujade, P., van Breukelen, B., Knijnenburg, T.,
de Hulster, E., Reinders, M., Pronk, J., Heck, A. and Slijper, M.
Microbiology 153 (2007) 3864-3878

regulatlc.‘)up regulatlgn modulation
transcription translation “
gene > MRNA > protein
b/
enzyme

structural component
modulation other



Workflow

Experiments, mass tagging

|

LC-MS/MS analysis

/\

Protein identification from MS/MS data Relative quantification

Quantitative protein data

Visualisation in network context
Metabolic enzymes

Probability density analysis
MIPS functional classes

\ BoxPlot
MIPS

functional
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Experimental set up
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Peptide identification

« SEQUEST for interpretation
of MS/MS spectra against
EBI proteome database, two
runs for each data file (**N,
15N peptides)

*each MS/MS spectrum individually
*defines a set of candidate peptides
with a matching mass from a DB

*compares the experimental spectrum
to the theoretical spectra

e Target-decoy searching for
FDR
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Target-decoy
search

o Search against the target
DB

e Search against reversed
(or randomised) DB

« Assumes the same
distribution for matches to
the decoy sequences and
false matches to the
original DB

e QOther choice: empirical
Bayes approaches
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Figure 1 | Overlap between target (forward) and decoy (reversed) sequences
is negligible. Human protein sequences within the minimally redundant
International Protein Index sequence database®! were digested in silico with
trypsin (maximum two missed cleavage sites, maximum peptide length =
45; target). Tryptic peptides were similarly generated from the reversed
protein sequences from this database (decoy). After converting isoleucines
to leucines, the numhber of peptide sequences in common between the two
databases was determined (intersection). Practically no peptides greater
than & amino acids in length were found in both forward and reversad
databases. Inset, percentage of peptides in common between target and
decoy sequences decreases with increasing peptide length.

Elias and Gygi, Nature Methods 4 (2007) 207-214



Protein identifications

DTASelect for assembling the identified peptides into
proteins

SEQUEST output as input

Sorts peptides by locus

Full protein sequences again from the same DB
User-defined criteria for selection of identifications

... FDR for protein identifications..?

In the previous publication: minimum Xcorr 1.9, 2.2 and 3.75 for 1+,
2+, and 3+ peptides, respectively, and minimum deltaCNs 0.1 for
each peptide



Relative quantification

* RelEx for calculation of peptide ion current ratios
* Extraction of ion chromatograms
* Smoothing
* Peak detection
* The peak nearest to the MS/MS spectrum is
chosen for the calculation of the isotoper ratio
* Linear least squares correlation
* Sorting peptide ratios by protein locus
* Omitting outliers (Dixon's Q-test)
* Protein mean and std (t-test)



Relative Abundance
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"forward"
labelling

reverse
labelling

ON/OFF peptides
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Generation ofa -
robust data set J, s

* Peptide stringency?
« PCA for inter-experimental o
variation (0.34) " T
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Generation of the final data set

# identified proteins in the triplicate analyses of the two
biological replicates = 1499

# identified proteins passed the RelEx phase = 892

# proteins present in both biological replicates = 490

# proteins within the 95% confidence interval of PC2 = 418
# on/off proteins = 56

# proteins in the final data set = 474

# proteins with at least two-fold differential expression =
249 (137 up in anaerobiosis, 112 down in anaerobiosis)



Functional categories and subcellular
locations

« Significance of over-representation of functional
categories and sub-cellular locations determined using a
hypergeometric test

« MIPS (Munich Information Center for Protein Sequances)
functional catalogue database (FunCatDB), 28 main
branches, a hierarchical, tree like structure with up to six
levels of increasing specificity



Table 1. Key functional categones of up- or downregulated proteins under anaerobiosis

MIPS category®

Protein identity

Mo, of proteins No. of proteins  P-value

in cluster® in genomes
Upregulated proteins
METABOLISM (01} 92 1520 1.3= 107
Amine acid metabolism Gdh3p, His?p, Arodp, Leulp, His¢p, Thrdp, Hom2p, Lysép, Sam2p, 35 245 7Ex 1077
(Lo} Sahlp, Serdp, Trp2p, Metbp, MetlOp, Lenlp, TrpSp, Arofp, Asnlp,
Adedp, Argdp, Serd3p, Iv3p, Cpalp, Homép, Maelp, Shm2p,
Metl7p, Acolp, Iv5p, Ilv2p, Arglp, Serlp, Glnlp, Tkllp, Asnlp
Purine nucleotide His7p, Hisdp, Aded 7p, Adedp, Adedp, Imd2p, Adel3p, Adel?p, 11 29 36x 107F
anabolism (01.03.01.03) Adedp, Adelp, Serlp
C-compound and Pyklp, Tpslp, AdhSp, Pgilp, Arodp, Sam2p, EmiZp, YELD47Cp, 41 3RR 7.9 1077
carbohydrate utilization Dld3p, Sahlp, Hxklp, Pyclp, Hxl2p, Adedp, Piklp, Enolp,
(0L05.00) YGRIETCp, Mall2p, Enolp, Rhelp, Suclp, Tdhip, Tdh2p, Maelp,
Pgmlp, Gpmlp, Pdelp, Shm2p, PdeSp, Acs2p, Acolp, Daklp,
Pgm2p, Iv2p, Adel7p, Plk2p, Gpd2p, Adhlp, Fumlp, Glnlp,
Tkllp
Other subcategories in Imdlp, PhoB8p, CdedBp, Ssblp, Hem13p, Rib3p, Erglp, Rnrdp, 0 nsll nsll
METABOLISM Ergllp, Thslp, Kar2p, Ssclp, Grelp, Stmlp, Yial2p, Frg2p, Faadp,
Ssh2p, Cmk2p, HspB2p
ENERGY (02) Pyklp, Gdh3p, Tpslp, AdhSp, Pgilp, DId3p, Hxklp, Pyclp, Hxk2p, 36 369 24x107°
Adedp, Piklp, Enolp, YGR2E7Cp, Mall2p, Eno2p, Oyelp, Tdhlp,
Aco2p, Tdh2p, Pgmlp, Gpmlp, PdcSp, Acs2p, Acolp, Pgm2p,
Asclp, Pik2p, Adhlp, HspB2p, Fumlp, Tkllp, Rib3p, YELO47Cp,
Tral2p
AMINOACYL-(RMNA lslp, Grslp, Seslp, YDR341Cp, Fra2p, Guslp, Vaslp, DedB1p, 12 39 22x 1077
SYWNTHETASES (12.10) YHROZOWp, Thslp, Dpslp, Alalp
Downregulated proteins
ENERGY (02) 33 369 L7x107"
Electron transport (02.11)  Cox2p, AtpSp, Qor?p, Riplp, Qerép, Coxdp, Coxl3p, Coxfip, 18 61 6.3% 1078
Cyelp, Atp7p, Sdh2p, Coxl2p, Cyb2p, CoxSAp, Cytlp, Alpdp,
Alp20p, Quorlp
Respiration (02,13} AtpSp, GuiZp, Cyelp, AtpTp, Cyb2p, Alddp, Atpdp, Atp20p, Coxlp, 21 138 1.0 107"
Pet9p, Qor?p, Riplp, Qertp, Coxdp, Coxlip, Coxtp, Sdh2p,
Coxl 2p, CoxSAp, Cytlp, CerZp
Aerobic respiration CoxZp, Pet9p, Qor?p, Riplp, Qcr6p, Coxdp, Cox13p, Coxdp, Sdhip, 13 77 B3x 1078
(02.13.03) Coxl 2p, CoxSAp, Cytlp, Qerlp
Other subcategories in Acslp, Mdh3p, Kgd2p, Agxlp, Poxlp, Idp2p, Adh2p, Gre2p, Lsclp, 12 nsll nsll

ENERGY

Fdh2p, YPLZZ6Wp, Icl2p




simulated 2D gels

CAIl = codon adaptation index

Subcellular localisation
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Regulatory level?
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amlnoacyl -tRNA synthetases

Probability density test

Transcript data from:
Tai et al., J Biol Chem 280 (2005) 437-447.

Were the proteins of a specific MIPS
category enriched in a specific part of
the data space covering the protein vs
the mRNA ratios?

H,: the data points corresponding to a particular
MIPS category are randomly sampled from all
proteins

To test H, the PDF of the complete distribution was
compared to the PDF of a particular MIPS category

PDFs were estimated and evaluated at a grid of etectron transport and
2500 co-ordinates rrge brane-associated

RMS value of the difference between the complete e%‘ﬁ rgy consegvation
set and a particular MIPS category was computed i

Permutation tests for significance to the possible T
rejection of H, \\ - s@@, -

Probabhility density =

% mRN}\ g ratio

—
Z
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Regulatory level box plot
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Conclusions

Quantitative protein data is required for studying cell
regulatory functions

Quantitative data in relative form

The main data processing steps:

1) assignment of the fragment ion spectra to peptide sequences
i) inference of the proteins represented by the identified peptides
iii) determination of the abundancies of the proteins

Data processing is still in stage of development
data processing includes manual steps
assessment of the quality of the data?

Integration of omics-data



