Time-Series Alignment by Non-negative Multiple Generalized Canonical Correlation Analysis

Bernd Fischer, Volker Roth, and Joachim M. Buhmann

Abhishek Tripathi Department of Computer Science University of Helsinki

Quick Overview

- Liquid chromatography coupled to mass spectrometry is widely used for quantitative protein analysis
- □ A LC/MS device generates mass peaks along time axis
- Non-linear time deformation is a major problem when comparing two biological samples or repeated experiments
- A technique based on Generalized Canonical Correlation Analysis is proposed to align the time series

Motivation

- □ In quantitative proteomics, it is of particular interest to
 - Classify a protien sample according to some phenotype, e.g. Cancer or non-cancer?
 - Identify relevant proteins discriminating different biological conditions
- Differential protein expression is the answer
 - Proteins are digested into peptides
 - Differential protein expression is estimated over all peptides that correspond to a particular protein
- □ Absolute expression level can not be robustly measured
 - Unknown ionization efficiency and digestion rates
 - Only differential protein expression can be reliable estimated
- Problem: Reliable correspondence between peptide measurements in several replicated samples?

Liquid Chromatography/Mass Spectrometry

- Peptides' amount as a list of peaks in 2D image
 - Mass/charge
 - > Time co-ordinate
- Time corresponds to the retention time: when peptide ion elutes from LC columns
- Similar peptides elute within small time window
- Mass axis usually well conserved, but the time axis shows nonlinear deformations
- □ For some peaks, the underlying peptide sequence is known

LC/MS cont.....

□ For each experiment, we have at various time points

- A large list without knowledge of underlying peptide sequence(2000-3000 peaks)
- A moderate list with known peptide sequence (100-200 peaks)
- □ The overlap between known peaks between experiments is small
- The idea is to increase the number of identified peaks by aligning all replicates of the experiments

Standard Methods for Alignment

- Correlation optimized warping : piece-wise linear functions to align pairs of time series
- A hidden Markov model by *Listgarten et al. 2005*
- □ Hierarchical clustering for alignment by *Tibshirani et al. 2004*
- Robust point matching by *Kirchner et al. 2007*
- Semi-supervised nonlinear ridge regression by *Fischer et al. 2006*
- Current work extends the idea of *Fischer et al. 2006* by using Generalized Canonical Correlation Analysis
 - Non symmetricity of ridge regression
 - □ Aligning multiple time series instead of only a pair of time series

Formal Problem Description

- Align K different time scale, each time is a list of peaks with time coordinates $P_k = \left\{ t_1^{(k)}, \dots, t_{n_k}^{(k)} \right\}$
- A set of known correspondence points between time scales k and l, peptides that are identified in both samples

$$C_{k,l} = \left\{ \left(t_1^{(k)}, t_1^{(l)} \right), \dots, \left(t_m^{(k)}, t_m^{(l)} \right) \right\}$$

- Determine a mapping $f_{k,l}: P_k \to P_l \cup \{\phi\}$, i.e., for a peak $p \in P_k$ find a corresponding peak (if exists) $q \in P_l$
- \Box ϕ represents the case when no corresponding peak is found
- □ Find a continuous transformtion $g_{k,l}$: $\Re \to \Re$, transforming the time scale k into the time scale l
- Given the transformation $g_{k,l}$, we create a mapping $f_{k,l}$

$$f_{k,l}\left(t_{j}^{(k)}\right) = \begin{cases} \arg\min_{t_{j}^{(l)} \in P_{l}} \{d_{ij}\} & \text{if } \exists i : d_{ij} \leq w \quad \text{where } d_{ij} = \left|t_{i}^{(l)} - g_{k,l}\left(t_{j}^{(k)}\right)\right| \\ \emptyset & \text{else.} \end{cases}$$

Estimating Time Transformation Function g_{k.I}

Robust Ridge Regression

- □ Let $(x_i, y_i) = (t_i^{(k)}, t_i^{(l)}) \in C_{k,l}$ time correspondence between time series k & l
- □ Transform time to polynomial basis $\phi(x_i) = (1, x_i, x_i^2, ..., x_i^d)^t$
- $\Box \phi(x_i)$: zero mean and unit variance
- \Box Find parameter vector β that minimizes

$$\sum_{i=1}^{n} L_{c}(\phi(x_{i})^{t}\beta - y_{i}) + \lambda\beta^{t}\beta$$

- Disadvantages of Robust Ridge Regression
 - \Box Unsysmmetric, $g_{k,l}$ is not inverse of $g_{l,k}$
 - Non monotonicity of time transformation function
- Canonical Correlation Analysis solves these issues

Canonical Correlation Analysis

- A method of correlating linear relationships between two multidimensional variables
- **Let** $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$
- \Box Find the directions W_x and W_y such that

 $\rho = \max_{W_x, W_y} corr(P_x(W_x), P_y(W_y))$

• Where $P_x(W_x)$ and $P_y(W_y)$ are projections of x and y onto W_x and W_y $P_x(W_x) = (\langle W_x, x_1 \rangle, \langle W_x, x_2 \rangle, \dots, \langle W_x, x_n \rangle)$ and $P_y(W_y) = (\langle W_y, y_1 \rangle, \langle W_y, y_2 \rangle, \dots, \langle W_y, y_n \rangle)$

Computing $g_{k,l}$ using CCA

Find
$$\beta_1$$
 and β_2 such that $\max_{\beta_1,\beta_2} corr(\phi(x_i)^t \beta_1, \phi(y_i)^t \beta_2)$
or $\maximize \frac{\sum_{i=1}^n \beta_1^t \phi(x_i) \phi(y_i)^t \beta_2}{\sqrt{\sum_{i=1}^n (\phi(x_i)^t \beta_1)^2 \sum_{i=1}^n (\phi(y_i)^t \beta_2)^2}}$

• or minimize
$$\sum_{i=1}^{n} (\phi(x_i)^t \beta_1 - \phi(y_i)^t \beta_2)^2$$
 s.t. $\|\beta_1\| = 1, \|\beta_2\| = 1$.

D Now, we have
$$g_k(x_i) = \phi(x_i)^t \beta_k$$

Non-negativity(monotonically increasing time transformation) not yet achieved!

Monotonically increasing Time Tranformation

Use a set of hyperbolic tangent basis functions

$$\phi(x_i) = \begin{pmatrix} \tanh(\sigma(x_i - z_1)) \\ \tanh(\sigma(x_i - z_2)) \\ \vdots \\ \tanh(\sigma(x_i - z_d)) \end{pmatrix}.$$

□ Non-negativity constraint on the regression parameters $\beta_{k,j} \ge 0$

□ The cost function now,

minimize
$$\sum_{i=1}^{n} (\phi(x_i)^t \beta_1 - \phi(y_i)^t \beta_2)^2$$
 s.t. $\|\beta_1\| = 1, \|\beta_2\| = 1, \beta_{k,j} \ge 0.$

Solved iteratively by gradient descent

Results

Data

- **3** different samples A, B, C from *Araidopsis Thaliana*
- Sample pair with samples consisting pool(A/B) and pool(B/C)
- 3 technical replicates of each sample
- Multiple CCA is used to joinly align all 6 experiments
- Results are compared with
 - Robust ridge regression for (6x5)/2 possible pairs
 - Method based on Thin plates spline
- Validation of peak matching with known peptide sequence
- Validation of differential protein expression values

Validation of peak matching with known peptide sequence

Validation of differential protein expression values

- □ Technically different samples, no biologically different samples available
- Compute mean log peptide abundance ratio averaged over all peptides for a particular protein
- Protein over/under –expressed between two conditions if average log ratio deviates with t-test significance level *a* from zero

