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MALDI-TOF Mass Spectrometer
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|ICA: Introduction
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|ICA Model

ICA Moddl : X = AS

Matrix of observedsignals: X =[X.,...,x.]"
Matrix of underlyingsignals:S=[s,,...,s,.]"
Mixing matrix A=[a;] .
m Generative model

Describes how observed data are generated by a process of
mixing underlying signals s

S, must be independent

s, are called independent components

m \When m < n and mixing matrix (A) is full-column rank,
one can determine unmixing matrix W such that S = WX
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ICA: Preprocessing for ICA

m Centering and Whitening
m Centering: Make each observation zero-mean

m  Whitening: Linear transformation which makes observations
uncorrelated and with unit variance
Common approach: Eigen value decomposition of the covariance matrix

E{XX"} =EDE",

where E : orthogonal matrix of eigenvectorsof E{ XX '}
D:diag(d,,d,,...,d,)

d. :eigen values

Whitened matrix : X = ED2E" X

whereD” = diag(d,”?,d, ?,...,d, %)

= S=WX =WE'D*EX =WX,

W isorthogonal (lower no. of degreesof freedom)
Finally the required unmixing matrix :W =WED 72E"
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FastICA Algorithm

m |CA model can be estimated iff ICs are non-Gaussian
m Estimation principle: ICs are maximally non-Gaussian components
m Kurtosis (4" order cumulant) is a measure for non-gaussianity
Yy : zero- mean random variable
kurt(y) = E{y"} - 3(E{ y})*
m Basic optimization technique: Gradient method

m Fixed-point algorithm for optimization
Find maxima of non-gaussianity using the absolute value of kurtosis
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ICA: Post processing

m After ICA decomposition A can be obtained from W as follows:
A= (VVTW) “w'

m Power of i" IC can be computed as follows:

p =23
j=1
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Simulated MALDI-TOF MS Data
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MALDI-TOF MS Experiments

30 patients

inflammatory auto-
immune disease

A

Serum Samples

A 4

1. Sample Preparation
2. Data acquisition (MALDI-TOF MS)

A 4
Signal calibration using internal
calibrants Peaks derived from mono-
and bi- charged myoglobin and
hemoglobin ions

v

Spectra normalized by peak intensity of
mono-charged myoglobin ion

A 4
X =NxKmatrix

n= Noof spectra:30
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Plasma Samples

1. Sample Preparation
2. Data acquisition (MALDI-TOF MS)

A 4

Signal calibration using internal
calibrants Peaks derived from mono-
and bi- charged myoglobin and
hemoglobin ions

v

Spectra normalized by peak intensity of
mono-charged myoglobin ion

A 4

X as = NX K matrix

n= Noof spectra:30
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MALDI-TOF MS Data from Experiments
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Analysis of Spectra

Input :
» ICA Decomposition:
Xwn’ Xser d Xplas’ or Xtot FastICA, Fixed-point algorithm
A 4
ICs and

Mixing matrix (Amplitudes)

A 4

Peak detection:

LIMPIC (noise threshold 100)
1. Smoothing

2. Baseline subtraction

3. Measurement of Noise

4. Peak picking
(Local maxima)

\ 4

ICs with Signals,
ICs showing artifacts, and Peaks

A 4

Biomarker identification
Mann Whitney U-test,
Benjamini-Hochberg multiple
testing correction
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Peak detection: Characterization of ICs.
1. Smoothing
m Signal enhancement

m Reduction of chemical and electronic noise

m Smoothing performed using Kaiser filter with smoothing
factor p set to cover a range of 5 Da.
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Peak detection: Characterization of ICs.
2. Baseline subtraction

m Baseline drift c locally estimated from signal blocks
having width of 150 Da

For each of them, average intensity (a.i.) was calculated so that
a vector w of amplitude values was generated

w was associated to the vector b of m/z values corresponding to
the central point of each interval

Components of w with rapid intensity variations were considered
to be out of the baseline. They were discarded

Baseline drift calculated from the remaining (bi,wi) by linear
Interpolation. Then removed from the spectrum
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Peak detection: Characterization of ICs.
3. Removal of residual noise

m Residual noise level o

Calculate SD of the values included in the blocks (width 150 Da).
Call them g«

Now calculate o by polynomial interpolation of the points (bk,gk)
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Peak detection: Characterization of ICs
4. Peak picking
m Local maxima: point of highest intensity among the xf
nearest points is the peak in that neighbourhood

m f=2. Covers arange of 0.5 Da

m Peaks with intensity lower than 100 are eliminated from
the peak list



|C waveforms of simulated data

IC ¥4

1IC#13

IC #25

IC w28

IC #43

Wavelorms

] )

a8
&
“

.,

Amplitudes

o
o

3 .
2}
ol _ . e J| e A e ol
[ 0 0 0 g B0 0
(TS, - - =
i85
14 " - 1
o5 | -, | 1
oI = 1 | . - |
o.ﬂ[l".ll ill'lu—..._u.—.-n.—v..lk—;]m ;_..lﬂ.-.rn_.:'-r I.-ll -ILJTJ
L] AL v = 1] 40 =0 L]
a
LE-]
1
[-E-1
L]
] 10 =0 30 40 &0 a0
@l
nos




"

|C waveforms of experiment data
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IC #1:
Component with the largest power

IC #4:
Signal. Outlier peak

IC #19:
Myoglobin protein
(16952.25 Da)

IC #35, #45:

* Double peak components

« Differentially expressed between
Plasma and serum (P < 0.05)

IC #53:

* Biological artifact (no peak above the
noise level detected)

» Amplitudes significantly different
(P <0.001)



Biomarker identification

IC label m/z (Da) Serum intensity  Plasma intensity P

IC #13 9139  0.503+£0.370 0.863£713 0.048
IC #17 9715 0.986 £0.695 0.534 £0.658 0.042
1C #20 6434, 6633 0.566+0.413 [.298 £ 1.038 0.047
1C #22 8917  0.634+£1.029 0.225+0.338 0.008
IC #23 9127  0.331£0.271 0.552£0.416 0.024
I1C #25 9629  0.367+£0.222 0.231£0.202 0.044
1C #30 6439, 6636  0.246+0.218 0.695+0.621 0.007
1C #35 6430, 6629  0.281£0.287 0.614 £0.494 0.029
1C #42 6451, 6648  0.018 £0.027 0.152+£0.247 0.038
IC #45 6881, 13762  0.158%0.177 0.004 £0.024 <0.001
IC#51 6941, 13882  0.1014£0.086 0.023 £0.047 <0.001
1C #59 5601, 5757 0.078 £0.107 0.035£0.046 0.049
1C #60 5069  0.09240.073 0.043+£0.031 0.002
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Performance comparison
of peak identification algorithms

using it sunjoct saaand e averege. ICA+ LIMPIC ~ APEX  CENTROID
SIS e
Serum Peaks 52 67 93 84

hit-rate 1 0.42 0.32 0.30
Plasma Peaks 49 84 [21 [13

hit-rate 1 0.40 0.30 0.25
Serum Peaks 89 88 143 [28
and plasma  hit-rate | 0.47 0.41 0.35
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Summary

m MALDI-TOF Mass spectra are contaminated by
biological and physical artifacts

m |CA extracted protein signals from calibrated and
normalized spectra

m Background noise and outlier peaks could be identified

m Real protein signals showed same peaks contained Iin
mass spectra with increased signal-to-noise ratio

m Can be integrated with existing peak detection methods
to enhance their effectiveness

m |ICA does not need any parameter tuning for separating
protein peaks from noise
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Comments

m Optimal number of independent signals is unknown
< number of mass spectra according to typical ICA model
Prior dimensionality reduction can perhaps help

m False positives (hit-rate: does that make sense?)

They indeed assume the absence of false positives... and the
paper states it!!!

Why not directly count them for synthetic data?
m Biomarkers: as such are they meaningful here?
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