Independent Component Analysis (ICA) for the extraction of protein profiles from MALDI-TOF MS spectra

Gopal Peddinti T.61-6070 Modeling of Proteomics Data 10.04.2008

Overview

- MALDI-TOF Mass Spectrometer
- Independent Component Analysis
- MALDI-TOF MS Data
 - Simulated Data
 - □ Data from Inflammatory auto-immune disease patients
- Analysis of Spectra
 - □ Independent Components
 - □ Characterization of ICs
 - Smoothing
 - Baseline subtraction
 - Removal of residual noise
 - Peak picking
 - □ Biomarker identification
- Summary and Comments

MALDI-TOF Mass Spectrometer

ICA: Introduction

Mixture 2

ICA Model

ICA Model : X = AS

Matrix of observed signals : $X = [x_1, ..., x_n]^T$ Matrix of underlying signals : $S = [s_1, ..., s_m]^T$ Mixing matrix $A = [a_{ii}]_{n \times m}$

Generative model

- Describes how observed data are generated by a process of mixing underlying signals s_i
- \Box s_i must be independent
- \Box s_i are called independent components
- When $m \le n$ and mixing matrix (A) is full-column rank, one can determine unmixing matrix W such that S = WX

ICA: Preprocessing for ICA

Centering and Whitening

- Centering: Make each observation zero-mean
- Whitening: Linear transformation which makes observations uncorrelated and with unit variance
 - □ Common approach: Eigen value decomposition of the covariance matrix

 $E\{XX^{T}\} = EDE^{T},$ where E : orthogonal matrix of eigenvectors of $E\{XX^{T}\}$ D : $diag(d_{1}, d_{2}, ..., d_{n})$ d_{i} : eigen values Whitened matrix : $\overline{X} = ED^{-\frac{1}{2}}E^{T}X$ where $D^{-\frac{1}{2}} = diag(d_{1}^{-\frac{1}{2}}, d_{2}^{-\frac{1}{2}}, ..., d_{n}^{-\frac{1}{2}})$ $\Rightarrow S = WX = WE^{T}D^{\frac{1}{2}}E\overline{X} = \overline{WX},$ \overline{W} is orthogonal (lower no. of degrees of freedom) Finally the required unmixing matrix : $W = \overline{W}ED^{-\frac{1}{2}}E^{T}$

FastICA Algorithm

- ICA model can be estimated iff ICs are non-Gaussian
- Estimation principle: ICs are maximally non-Gaussian components
- Kurtosis (4th order cumulant) is a measure for non-gaussianity

y : zero - mean random variable

 $kurt(y) = E\{y^4\} - 3(E\{y^2\})^2$

- Basic optimization technique: Gradient method
- Fixed-point algorithm for optimization
 - □ Find maxima of non-gaussianity using the absolute value of kurtosis

ICA: Post processing

• After ICA decomposition A can be obtained from W as follows:

$$A = (W^T W)^{-1} W^T$$

• Power of *i*th IC can be computed as follows:

$$p_i = \sum_{j=1}^n a_{ij}^2$$

$$x(z) = \frac{A_0}{\tau} \exp\left(\frac{\sigma_p^2}{2\tau^2} - \frac{z - z_p}{\tau}\right) \int_{-\infty}^h \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-z^2}{2}\right) dt$$

z: m/z value

 A_0 : area of the peak \leftarrow [180,700]

 τ : time constant of the exponential decay $\leftarrow 0.0172$

 σ_p : controls the tailing of the peak $\leftarrow 0.0189$

 z_p : determines the position of the peak on m/z axis \leftarrow [6000,18000] $\frac{\tau}{\sigma_p}$: measure of asymmetry

$$h = \frac{z - z_p}{\sigma_p} - \frac{\sigma_p}{\tau}$$

Simulated MALDI-TOF MS Data

MALDI-TOF MS Experiments

MALDI-TOF MS Data from Experiments

Analysis of Spectra

Peak detection: Characterization of ICs. 1. Smoothing

- Signal enhancement
- Reduction of chemical and electronic noise
- Smoothing performed using Kaiser filter with smoothing factor p set to cover a range of 5 Da.

Peak detection: Characterization of ICs.2. Baseline subtraction

- Baseline drift *c* locally estimated from signal blocks having width of 150 Da
 - □ For each of them, average intensity (a.i.) was calculated so that a vector w of amplitude values was generated
 - w was associated to the vector b of m/z values corresponding to the central point of each interval
 - Components of *w* with rapid intensity variations were considered to be out of the baseline. They were discarded
 - Baseline drift calculated from the remaining (*bi,wi*) by linear interpolation. Then removed from the spectrum

Peak detection: Characterization of ICs. 3. Removal of residual noise

- Residual noise level σ
 - Calculate SD of the values included in the blocks (width 150 Da).
 Call them g_k
 - \Box Now calculate σ by polynomial interpolation of the points (bk,gk)

Peak detection: Characterization of ICs 4. Peak picking

- Local maxima: point of highest intensity among the ±f nearest points is the peak in that neighbourhood
- f = 2. Covers a range of 0.5 Da
- Peaks with intensity lower than 10σ are eliminated from the peak list

IC waveforms of simulated data

IC waveforms of experiment data

IC #1: Component with the largest power

IC #4: Signal. Outlier peak

IC #19: Myoglobin protein (16952.25 Da)

IC #35, #45:

- Double peak components
- Differentially expressed between Plasma and serum (P < 0.05)

IC #53:

- Biological artifact (no peak above the noise level detected)
- Amplitudes significantly different (P < 0.001)

Biomarker identification

IC label	m/z (Da)	Serum intensity	Plasma intensity	Р
IC #13	9139	0.503 ± 0.370	0.863 ± 713	0.048
IC #17	9715	0.986 ± 0.695	0.534 ± 0.658	0.042
IC #20	6434, 6633	0.566 ± 0.413	1.298 ± 1.038	0.047
IC #22	8917	0.634 ± 1.029	0.225 ± 0.338	0.008
IC #23	9127	0.331 ± 0.271	0.552 ± 0.416	0.024
IC #25	9629	0.367 ± 0.222	0.231 ± 0.202	0.044
IC #30	6439, 6636	0.246 ± 0.218	0.695 ± 0.621	0.007
IC #35	6430, 6629	0.281 ± 0.287	0.614 ± 0.494	0.029
IC #42	6451, 6648	0.018 ± 0.027	0.152 ± 0.247	0.038
IC #45	6881, 13762	0.158 ± 0.177	0.004 ± 0.024	< 0.001
IC #51	6941, 13882	0.101 ± 0.086	0.023 ± 0.047	< 0.001
IC #59	5601, 5757	0.078 ± 0.107	0.035 ± 0.046	0.049
IC #60	5069	0.092 ± 0.073	0.043 ± 0.031	0.002

Performance comparison of peak identification algorithms

Hit-rate : Ratio between number of peaks using multi-subject data and the average number of peaks detected in the single spectra Hit-rate = 1 means no false positives			ICA + LIMPIC	LIMPIC	APEX	CENTROID
	Serum	Peaks hit-rate	52 1	67 0.42	93 0.32	84 0.30
	Plasma	Peaks hit-rate	49 1	84 0.40	121 0.30	113 0.25
	Serum and plasma	Peaks hit-rate	89 1	88 0.47	143 0.41	128 0.35

Summary

- MALDI-TOF Mass spectra are contaminated by biological and physical artifacts
- ICA extracted protein signals from calibrated and normalized spectra
- Background noise and outlier peaks could be identified
- Real protein signals showed same peaks contained in mass spectra with increased signal-to-noise ratio
- Can be integrated with existing peak detection methods to enhance their effectiveness
- ICA does not need any parameter tuning for separating protein peaks from noise

Comments

- Optimal number of independent signals is unknown
 - $\Box \leq$ number of mass spectra according to typical ICA model
 - Prior dimensionality reduction can perhaps help
- False positives (hit-rate: does that make sense?)
 - They indeed assume the absence of false positives... and the paper states it!!!
 - □ Why not directly count them for synthetic data?
- Biomarkers: *as such* are they meaningful here?

References

- Mantini D, Petrucci F, Boccio PD, Pieragostino D, Nicola MD, Lugaresi A, Federici G, Sacchetta P, Ilio CD, Urbani A (2007) Independent component analysis for the extraction of reliable protein signal profiles from MALDI-TOF mass spectra. *Bioinformatics*: btm533.
- Mantini D, Petrucci F, Pieragostino D, Del Boccio P, Di Nicola M, Di Ilio C, Federici G, Sacchetta P, Comani S, Urbani A (2007) LIMPIC: a computational method for the separation of protein MALDI-TOF-MS signals from noise. BMC Bioinformatics 8: 101.