

Outline

- Motivation
- Vegetation Measurements
- Linear Regression
- Multilayer Perceptron
- Supervised Learning and Bootstrap
- Inputs and Results
- Improvements and Stability
- Discussion

Motivation

- Water and Energy Exchange Process
- Part of Terrestrial Ecosystem
- · Explain the Past
- Predict the Future
- Environmental Changes
- Agriculture and Conservation

Vegetation Measurements 1/2

- Multispectral Remote Sensing
- Past Climate Data

 Recorded History
 Carbon Dating and Core Samples
- Soil Samples
- Flora and Fauna Frequencies
- Classification Features

Vegetation Measurements 2/2

Linear Regression

- Simplest Linear Network (Pattern Associator)
- Iterative Version of Regression

$$y(t) = \sum_{j=1}^{p} w_{j}(t) x_{j}(t)$$

$$w_{j}(t+1) = w_{j}(t) + \eta e_{j}(t) x_{j}(t)$$

Multilayer Perceptron

- Layered Feedforward Network
- Nonlinear Neuron Outputs
- Error Back-Propagation Algorithm

 $y_j^l(t) = f\left(u_j^l(t)\right)$

 $u_{j}^{l}(t) = \sum_{j=1}^{p} w_{ji}^{l}(t) y_{i}^{l-1}(t)$

$w_{ji}^{l}(t+1) = w_{ji}^{l}(t) + \alpha \left[w_{ji}^{l}(t) - w_{ji}^{l}(t-1) \right] + \eta e_{j}^{l}(t) y_{i}^{l-1}(t)$

Supervised Learning and Bootstrap

- · Data Divided into
 - Training Set
 - Testing Set
- Iterate Over Multiple Epochs - Adaptive Learning and Momentum Rates
- Possible Bootstrapping at Each Epoch - Resampling of Training Set

Inputs and Results 1/3

- Landsat TM (30x30m)
 - Band 3 (Red)
 - Band 4 (NIR)
 - Band 5 (MIR)
- Standard Statistics
 - Vegetation Index (VI) Normalized Difference Vegetation Index (NDVI)
- Field Surveyed Attributes
 - Loblolly Pine Age

 $age = 58.74 - 1.023B_4$

Inputs and Results 2/3

- Sampled at 1 Hectare
- Vegetation Classes
- ٠ **Climate Variables**
- Digital Elevation Model

Input variable	Minimum	Manjatrum
Annual mean temperature (*C)	16.1	25.7
Min. Temperature of coldest period (%)	5.1	18.4
Mean Temperature of warmest quarter (*O	20.9	27.9
Mean Temperature of coldest quarter (N)	10.8	23.1
Annual Precipitation (mm)	775	7966
Precipitation of wetlest quarter (mm)	552	3754
Precipitation of driest quarter (mar)	*	913
Slope (14)		44.7
Soil water index (logarithmic scale)	-9.7	26.4
Aspect NS	- 59.2	54.4
Aspect EW	- 30.4	56.2
Distance to nearest dissinage line (m)	٠	1413
Distance to nearest perennial stream (m)	*	50700
Distance to coardine (m)		83922

Inputs and Results 3/3

Fig. 4. Mag-of the out-tion mapped with circle

Improvements and Stability

- · Exclude Distance to Coastline
- Input Climate Data for
 - 16000 BC
 - 7000 BC
 - 5000 BC
 - Present
- Analyze Stability
- · Use Neighborhoods

Discussion

- Different Scales of
 - Spatial Resolution
 - Temporal Resolution
 - Continuity of Values
- Validity of Ground Truth
 Accuracy of Field Surveys
- Explaining MLP-model