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Introduction

• Plants take up substances from environment.

• Foliar mineral composition is related to environment.

• Analysis of foliar nutrient concentrations is an important part of
environmental monitoring.

• Results of cooperative foliar nutrient research done in:

– Laboratory of Computer and Information Science

– Finnish Forest Research Institute

– University of Antwerp
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Forest foliar nutrition data

• Nutrient concentration data measured from forests of Finland.

• Data from a large-scale forest monitoring program:

– International Co-operative Programme on Assessment and
Monitoring of Air Pollution Effects on Forests (ICP) operating
under United Nations Economic Commission for Europe
(UNECE).

• Data collected by Finnish Forest Research Institute.

4



'

&

$

%

Forest foliar nutrition data

• Foliar nutrient data from 38 Finnish ICP Forests Level I stands.

– 17 Norway spruce and 21 Scots pine stands located in
different parts of Finland.

– Annual measurements between years 1987–2003.

– In each stand mass of needles and concentrations of 12
nutrients in pine or spruce needles were measured.

– Measurements of both new and one year old needles.

– 29% of measurements missing.
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Forest foliar nutrition data

Nutrient concentration
data vectors

Laboratory

. . .

2x13 variables

17 years

38 stands
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Forest foliar nutrition data

Concentration measurements
from the needles:

Al, B, Ca, Cu, Fe, K,
Mg, Mn, N, P, S, Zn.

�
�
�
�

Scots pine
Norway spruce

1987−2003
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Forest foliar nutrition data

• Environmental measurements:

– Deposition measurements

– Temperature

– Precipitation

• Laboratory quality data from different sources:

– International interlaboratory tests

∗ International Union of Forest Research Organizations
(IUFRO) laboratory comparisons, 1987–1994

∗ ICP Forests ring tests, 1993–

– National calibration tests with certified reference materials,
1995–
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Foliar analysis using clustering of the SOM

• Clustering of the SOM was used to analyze chemical
composition of tree foliage.

• Exploratory analysis.

• Aims to understand the spatio-temporal mechanisms in
development of foliar nutrient concentrations.

• Clusters (nutrition profiles) are a new concept in foliar analysis.

• 4D vectors: 3 concentrations (N, S, P) and needle mass (NM).

9

'

&

$

%

Clustering method

• An automated clustering approach.

• Results similar to the U-matrix.

• Four phases:

– Calculate SOM and distance matrix

– Divide map into base clusters

– Construct cluster hierarchy

– Select final partitioning

• Cluster hierarchy allows the data to be investigated at several
levels of detail

10

'

&

$

%

Results of clustering

• 6 clusters.

• Some correlation with location.
1987 1988 1989 1990 1991 1992 1993

1994 1995 1996 1997 1998 1999 2000
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Results of clustering

• How about changes in time?

• Transition matrices show different cluster swithces in time

• In pine stands the clusters change with time.

– Clusters with low N, S, P, K, Ca, Mg
and Al concentrations have become more
abundant.

11139
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• The effect of N and S deposition on needles has decreased
between 1987-2000.
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Analyzing aging of needles with sparse regression

• Understanding and predicting the development of nutrient
concentrations are challenging tasks.

• Aims:

– Predict nutrient concentrations and needle mass of one year
old needles in year t using the measurements of new needles
in year t − 1 and the environmental measurements in year t.

– Model the effect of environment and nutrients to the aging of
the needles.

– Use only a few significant regressors of total 22 for each
response.

– The models should give an understandable description of the
connections between variables.
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Sparse regression models

• Different multiple linear regression models were used for
prediction:

Xi,t,C+1 =
13
∑

j=1

βi,jXj,t−1,C +
22
∑

j=14

βi,jZj,t + ǫi

• Main advantages of linear models:

– Easy to interpret.

– Over short ranges, any process can be well approximated by
a linear model.

• In a sparse regression model, some coefficients βi,j = 0.
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Sparse regression models

• Small number of coefficients makes the model easier to interpret
and less prone to overfitting.

• Least Angle Regression (LARS) model selection algorithm and
MDL information criterion were used to find the most significant
regressors.

• Forward selection was used as a baseline method.

• The sparse models were compared to full regression model and
a simple one-parameter model.
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Results of sparse regression

• The quality of prediction was measured with the coefficient of
determination R2 and validated using 20 times 10-fold
cross-validation.

• Usually, the sparse models outperform the one-parameter
model, and their results are mainly comparable to the full model.

• The number of coefficients in sparse models is much lower: on
average 6.1 in forward selection and 4.4 in LARS (out of 22).
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Results of sparse regression
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Pine Spruce

Average R2-values for one-parameter (black), forward selection (light
gray), LARS (white) and full models (dark gray) obtained using

cross-validation.
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Results of sparse regression
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Values of the coefficients of LARS models.
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Results of sparse regression

• A typical LARS model and full model:

Znt,C+1 = −0.27Mgt−1,C + 0.69Znt−1,C

−0.20X + 0.18STt + 0.09At

Znt,C+1 = 0.18Alt−1,C − 0.01Bt−1,C + 0.02Cat−1,C + 0.09Cut−1,C

−0.04Fet−1,C − 0.11Kt−1,C − 0.19Mgt−1,C + 0.05Mnt−1,C

−0.11Nt−1,C − 0.07NMt−1,C + 0.15Pt−1,C − 0.13St−1,C

+0.62Znt−1,C − 0.55Y − 0.35X + 0.06NTt + 0.25STt

−0.63T At + 0.32T Dt − 0.13P Tt + 0.07PDt + 0.14At

• Permutation test showed that virtually always the best regressors
were chosen to the LARS models.

• Given the number of coefficients, it is very hard to find a model
that characterizes better the development of the foliage.
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Weighted regression and data quality

• Chemical analyses of foliar samples are prone to many errors.

• Laboratory quality has improved in past two decades due to
quality control and development of methods.

• Despite the improvements there are still problems in quality.

• The impact of laboratory quality on detecting changes in
environment was studied.

• Theoretical computations and experiments with real-world data
were used to analyze how trend detection is affected by
changing data quality.
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Weighted regression and data quality

• Aims:

– Analyze the effect of changing data quality on detecting
changes in environment.

– Study the use of weighted linear regression models in
detecting trends in foliar time series data.

– Find out how improvements in laboratory quality affect the
statistical significance of trends found in foliar nutrients.

– Calculate how much improvements in laboratory quality
decrease the time needed to detect a trend.
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Data quality

true average

accuracy

precision

Distribution of measurements, accuracy and precision.
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Data quality

Accurate
and precise

Not accurate
but precise

Accurate but
not precise

Not accurate
and not pre-
cise

Accuracy and precision
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Weighted regression models

• Ordinary least squares regression assumes homoscedastic data.

• Weighted least squares regression can be used to analyze
heteroscedastic data.

Yi = β0 + β1Xi + ǫi, i = 1, . . . , n

ǫi ∼ N(0, σ2
i )

wi =
1

σ2
i

.

• Iteratively reweighted least squares regression (IRLS) can be
used if variance is partially unknown.

• The hypothesis β1 6= 0 can be tested with the F-test.
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Data quality

• The development of laboratory quality was inspected.
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Average precision of laboratories in ICP Forests ring tests.
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Model of data quality

• A simple linear model for development of measurement precision
was constructed.

σi =







b−c
a

Xi + c if Xi ≤ a

b if Xi > a

0 a

b

c

t

σ

0 a
t

Precision Measurements
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Results of weighted regression
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Trend detection with linearly changing precision.
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Results of weighted regression
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Results of weighted regression

• Accuracy and precision of the laboratory in Finland was
estimated using combined results of the three quality tests.

• The foliar nutrient data was analyzed using IRLS regression.

• Statistically significant (p < 0.05) increasing trend was found in
eight nitrogen (N) and decreasing trend in 26 sulfur (S) time
series (out of 38).

• The trends were detected on average in 11 years.

• If the precision of the Finnish laboratory would have been the
same as in the most imprecise laboratories in Europe, none of
the trends would have been detected.
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Summary

• Analysis of nutrient concentrations of needles in Finland.

• Analysis using clustering of the self-organizing map:

– Identification of profilic states from forest nutrition data.

– Temporal cluster development: cluster switches in time

– Decrease of many nutrient concentrations in nutrition profiles
of pine needles.

– Decreased effect of N and S deposition.
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Summary

• Factors affecting aging of needles

– Sparse models were found to be more suitable for the
problem than the two other models.

– They have comparable prediction accuracy to the full model,
but with a significantly smaller number of parameters.

– LARS models are slightly sparser than forward selection
models.

– Sparsity makes interpretation easy.

– Helping to find the significant dependencies between different
variables is an important feature of the sparse models.
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Summary

• Measurement quality

– Experiments with weighted regression show that
measurement precision strongly affects trend detection.

– The results from theoretical computations and experiments
with real world data highlight the importance of quality in
laboratory analyses.

– Improving data quality can decrease the time needed for
finding statistically significant trends.

– With better quality smaller trends can be detected.
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