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About the problem [T-122.102] (4)

• Themes:

– Discrete data

– Joint distributions

– Principled approaches (e.g. mutual information, generative models)



Joint distributions [T-122.102] (5)

• Variables: X (e.g. documents) and Y (e.g. word counts)

• Clustering: X → X̃ (e.g. document clusters) and/or Y → Ỹ (e.g. topics)

X

Y

Various solutions [T-122.102] (6)

• Mutual information -motivated methods (e.g. IB, DC)

• Generative models (e.g. LDA, mPCA)

• Kernel methods (e.g. Fischer kernels)

• . . .

• Discretizing data

Mutual information [Mutual information] (7)

• Mutual information:

I(X ,Y ) = ∑
x∈X ,y∈Y

P(x,y) log
P(x,y)

P(x)P(y)

• I(X ,Y ) is the Kullback Leibler divergence, KL(P,Q), between the joint

distribution P(X ,Y ) and the distribution that assumes that X and Y are

statistically independent, Q(x,y) = P(x)P(y). If we are picking samples

from distribution P then the mutual information (or KL divergence)

measures the average amount of information the samples give for

deciding that the samples are not from the distribution Q.

• General idea: find an intermediate representation that maximizes

I(X ,Y ).

Information bottleneck (IB) [Mutual information] (8)

• Shannon’s theory: X is transmitted using coding defined by X̃ and then

decoded to Y ,b

X → X̃ → Y .

What is the optimal coding (maximizes I(X ,Y ) for a given channel

capacity)?

• Equivalent(?) problem: find optimal coding/clusterng X that transmits

optimal value of information for a fixed value of I(X̃ |X). I.e., maximize

I(X̃ ,Y )−βI(X̃ ,X) ,

where β is a Lagrange multiplier.

• Works only for discrete data (I(X̃ ,X)?)

• No need for generative model



Clustering text [Mutual information] (9)

• Input:

– X (documents), Y (word counts in documents)

– Empirical joint distribution, P(X ,Y )

– Number of clusters, k

– Parameters for the optimization algorithm

• Output:

– Cluster assignement probabilities for the documents (“coding”),

P(X̃ |X)

– Cluster centroids (“decoding”), P(Y |x̃i), i = 1, . . . ,k.

Clustering text (continued) [Mutual information] (10)

[Inserts figure 2 and 4 from Tishby et. al 2003 here]

[PS. Our scanner is currently unavailable...]

Discriminative Clustering (DC): a very cursory introduction [Mutual information] (11)

• See e.g. Sinkkonen, Kaski, 2002.

• Clustering algorithm based on KL divergence. Cost function:

∑
j

Z

dxy j(x)KL(p(c|x),Ψ j)p(x) ,

where Ψ j is a cluster prototybe and y j(x), ∑ j y j(x) = 1, is a cluster

membership function.

• Inputs are pairs of (xk,yk) data, where xk ∈ Rn (data, ∼ X ) and

ck ∈ {1, ...,K} (class, ∼ Y ).

• Cost function is essentially equivalent to I(X̃ ,Y )

• I(X̃ ,X) is fixed by the model complexity and the number of clusters

Generative models [Generative models] (12)

• Assume that data has been generated by some model having

parameters θ

• Idea: find the parameters θ by optimizing maxθ P(X |θ), maxθ P(θ|X) or

P(θ|X).

• Latent Dirichlet Allocation (LDA) and Multinomial PCA (mPCA) are

essentially the same thing (some differences in priors and optimization

algorithms)



The basic model [Generative models] (13)

• Each individual/document, indexed by d = 1, . . . ,D, is composed of Nd

loci/words (L different alleles/words). Each allele/word originates from

one of k populations/topics, denoted by zn = 1, . . . ,k, n = 1, . . . ,Nd :

P(θ|α) ∼ Dirichlet(α;k) ,

P(zn|θ) = θzn ∼ Multinomial(θ;k) ,

P(xn|zn,β) = βxn,zn ∼ Multinomial(βθ;L) .

• Generative model (comp. graphical model):

P(X |α) =
Z

dθP(θ|α)
Nd

∏
n=1

k

∑
zn=1

p(xn|zn,β)p(zn|θ)

• Non-negative generalization of PCA

(Gaussian ↔ Dirichlet, Multinomial)

MCMC approach to LDA/mPCA [Generative models] (14)

• Pritchard et al. 2000, unreferenced by the (first) LDA/mPCA papers

• The posterior probability distribution P(θ,β|X) is sampled using a

Markov Chain Monte Carlo (MCMC) method

• Input:

– The genomes of individuals

– Number of clusters, k

• Output:

– The population decompositions for each individual, {θi}i=1,...,k

– The mixing matrix P(xn|zn,β) = βxn,zn ∈ RL×k,

MCMC approach to LDA/mPCA [Generative models] (15)

[Insert figure 4 from Pritchard et al. 2000 here]

LDA/mPCA [Generative models] (16)

• maxλ P(X |λ), where λ denote the parameters, is found using variational

extension to EM

• Faster than MCMC but may also be more unstable

• Variational means that the joint distribution of “hidden variables” h ∼ θ,z

is approximated by a product distribution q(θ,z|λ′) = q(θ)∏n q(zn),

having some parameters λ′.

• Cost function:

L(λ,λ′) = logP(X |λ)−KL(q(h|λ′), p(h|X ,λ)

= H(q(h|λ′))+Eq(h|λ′){logP(X ,h|λ)} . (1)

The cost function is maximized by iteratively minimizing the KL

divergence with respect to λ′ and maximizing the expectation with

respect to λ, resulting to a lower bound to logP(X |λ).



Extension: Annotations [Generative models] (17)

• Each “document” consists of a image data (feature vectors) and captions

• Generative model: [Insert figure 2 from Blei, Jordan, 2003 here]

• Variational approximation

• Automatic annotations: [Insert figure from 5 Blei, Jordan, 2003 here]

Mutual information kernels [Kernel methods] (18)

• See e.g. Seeger, 2001

• Assume the data set X is generated by some model, having parameters

θ

• Then the joint distribution of two variables xi ∈ X can be written as

P(x1,x2) =
Z

dθP(θ|X)P(x1|θ)P(x2|θ) ,

and the marginal distribution as

P(x) =
Z

dθP(θ|X)P(x|θ) .

• Define sample mutual information by

I(x1,x2) = log
P(x1,x2)

P(x1)P(x2)
. (2)

Mutual information kernels (continued) [Kernel methods] (19)

• Kernel should at least satisfy K(x1,x2) = K(x2,x1) ≥ 0.

• Intuitive idea: if K(x1,x2) is large then x1 and x2 are similar and if

K(x1,x2) is small then x1 and x2 are dissimilar. Kernel thus defines a

similarity measure.

• I(x1,x2) defines some kind of a similarity measure. However, it is not

always positive and it is thus not a good kernel.

Mutual information kernels (continued) [Kernel methods] (20)

• Define a positive definite kernel by exponential embedding,

K(x1,x2) = exp
(

−D2(x1,x2)
)

,

where

D2(x1,x2) = I(x1,x1)+ I(x2,x2)−2I(x1,x2) .

• If the kernel can be represented as an inner product in Euclidean space,

I(x1,x2) = φT
x1

φx2 , then the distance D2(x1,x2) corresponds to the

squared Euclidean distance |φx1 −φx2 |
2.

• Classification task (two classes, Si = ±1). Optimize e.g. discriminant:

L(x) = ∑
i

SiλiK(x,xi) .



Fischer kernels [Kernel methods] (21)

• Approximate P(θ|X) with a Gaussian around MAP parameters, θ̂,

P(θ|X) ∝ exp

(

−
1
2
(θ− θ̂)T H−1(θ− θ̂)

)

,

and make linear approximation of P(xi|θ),

logP(xi|θ) ≈ logP(xi|θ̂)+Uxi(θ− θ̂) ,

where Uxi = ∇θ̂logP(xi|θ̂) (Fischer score).

• This results to the original Fischer kernel (Jaakkola, Haussler, 1998),

I(x1,x2) = UT
x1

H−1Ux2

and

K(x1,x2) = exp
(

−(Ux1 −Ux2)
T H−1(Ux1 −Ux2)

)

.

Other approaches [Kernel methods] (22)

• Exact kernels, without Gaussian approximation

[Insert figure 1 from Lafferty et al. here]

Discretization [Others] (23)

• How to discretize continuous data optimally?

• The discretization may affect the results significantly

• E.g. Steck, Jaakkola, 2003 (find discretization that maximizes the

likelihood of the data)

Summarizing [T-122.102] (24)

• Themes:

– Discrete data

– Joint distributions

– Principled approaches (e.g. mutual information, generative models)

• Recent advances:

– Mutual information based methods (e.g. IB)

– Generative model based methods (e.g. LDA/mPCA)

– Information theoretical kernels (concepts from mutual information

and generative models)

– Discretizing data

– Other stuff?


