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1 Introduction

Information geometry is a highly abstract branch of
mathematics that unifies statistical and geometrical
concepts. The discipline provides general framework
of many statistical phenomenas. The main draw-
backs of the theory is generality—the approach sel-
dom provides novel ideas and techniques. The sur-
vey covers one of the novelties—information diffu-
sion kernels [6, 5]. Of course, we cannot exhibit the
whole internal beauty of information geometry, but
we encourage the interested reader to browse detailed
monographs [7, 1].

The idea behind the information diffusion kernels
is surprisingly simple. Each data point is associated
with a distribution from some predefined family of
distributions. The proximity measure in the feature
space is defined rather over distributions themselves
than on the parameterization. The association and
the proximity measure together form a kernel. The
modular definition allows reuse notions from differ-
ential geometry to analyze statistical properties like
asymptotic consistency.

The brief outline of the survey is following. First,
we discuss how to bind data with probability distribu-
tions. Next we cover the concepts and motivation be-
hind heat-diffusion kernels and define heat-diffusion
over probability distributions. Finally, we cite results
of experiments [6] that show effectiveness of the ap-
proach.

2 From data to distribution

Traditional kernel methods are biased towards con-
tinuous data, i.e. most of the kernels assume that
data comes from a subset of R

n. As the real-world
data is often varying and discrete like text docu-
ments, DNA and protein sequences, one has to use
some ad hoc technique to find an embedding into
R

n. Frequently used embeddings are based on gen-
erative models, i.e. a discrete data object is assumed
to be generated by a stochastic process. Two natural
embeddings that map data to probability distribu-
tion are maximum likelihood (ML) and maximum a
posteriori (MAP) estimates. Traditionally the cor-
responding parameter vector θ is interpreted as an
element of R

n and continuous kernels are used for
further inference. Hence, different parameterizations
can lead to different results, although the correspond-
ing model itself is same. Recently, several parameter-
ization independent techniques like Fisher kernels [2]
and mutual information kernels [8] have been pro-
posed besides information diffusion kernels. Never-
theless, they can be viewed in the information geom-
etry framework.

Text classification will be our central example. As
usual we employ a bag of words approach. Namely,
each document is represented by keyword count vec-
tor x. The simplest generative model of text is multi-
nomial distribution with parameters θ. Clearly, the
term frequency representation

θ̂tf(x) =
1

x1 + · · · + xn
(x1, . . . , xn)
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corresponds to the ML estimate. Second fre-
quently used embedding is inverse document fre-
quency weighting

θ̂tfidf(x) =
1

x1wi + · · · + xnwn
(x1wi, . . . , xnwn)

where the weight wi = log(1/fi) is logarithm of the
inverse term frequency in document collection.

3 Statistical manifolds

The main quest of information geometry is to derive
parameterization independent quantities over fami-
lies of probability distributions. But first we have to
define the notion of statistical manifold. Let X be
the domain of all possible values. Then a statistical
manifold P is a parameterized family of probability
distributions

P = {p(·|θ) : X → R | θ ∈ Θ} ,

where Θ is open subset of R
n. The parameterization

must be unique: p(·|θ1) ≡ p(·|θ2) ⇒ θ1 = θ2. Hence,
θ can be treated as the coordinate vector of p(·|θ).
We say that parameterization ψ is admissible iff ψ as
a function of primary parameters θ is C∞ smooth. It
is easy to see that the set of admissible parameteriza-
tions does not change, if we take arbitrary admissible
parameterization as a primary.

We consider only manifolds where log-likelihood
function `(x|θ) = log p(x|θ) is C∞ differentiable
w.r.t. θ. Note that the property is invariant under all
admissible parameterizations. For example, multino-
mial family satisfies the C∞ requirement, since

`(x|θ) = log

m∏

j=1

θxj
=

m∑

j=1

log θxj
.

For proximity, we need also vectors and distance
measure. The distance between two points is defined
as length of the shortest path and the length itself is
defined via integral and Euclidean norm

d(p, q) =
1∫
0

‖γ̇(t)‖ dt =
1∫
0

√
〈γ̇(t), γ̇(t)〉dt,

where γ : [0, 1] → P corresponds to a (simple) path
and γ̇(t) to a tangent vector. Since the family P a
priori does not have any geometrical structure, we
need an abstract definition of vectors. Formally, a
vector will be a function that maps functions with the
type P → R to real numbers. For fixed coordinates
θ and point p natural maps

(
∂

∂θi

)
p

emerge

(
∂

∂θi

)

p

(f) =
∂f

∂θi

∣∣∣∣
p

.

Let us denote lines with only varying coordinate
γi(t) = p(·|θ1, . . . , θi + t, . . . , θn). Then the derivative
of f(γi(t)) at point p will be exactly

(
∂

∂θi

)
p
(f). More-

over, if the path γ is differentiable, we can always
decompose f(γ(t))′ as linear combination of partial
derivatives

f(γ(t))′ =
[
θ1(t)

′
(

∂
∂θ1

)
γ(t)

+ · · · θn(t)′
(

∂
∂θn

)
γ(t)

]
(f)

As the operator in the square brackets does not de-
pend on f and has a right type, we baptize it as the
speed vector γ̇(t). For a fixed coordinate system θ,
we can express γ(t) =

(
θ1(t), . . . , θn(t)

)
and we have

a natural representation

γ̇(t) 7−→
(
θ̇1(t), . . . , θ̇n(t)

)
∈ R

n,
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Figure 1: Non-Cartesian coordinate system and cor-
responding tangent vectors
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but this is not coordinate independent. Moreover,
the basis

(
∂

∂θi

)
p

may change along the manifold (see

Figure 1). Remarkably, the abstract tangent vector
does not depend on coordinates. In case of R

n, we
can interpret tangent vectors γ̇(t) as usual vectors of
R

n. But without supporting geometrical structure
the generalized speed has retained only the most im-
portant feature—for each function f : P → R, the
speed uniquely characterizes the rate of change at
point γ(t).

To fix a geometry, we need also reasonable def-
inition of metric. A usual derivation of metric on
statistical manifolds is too involved and abstract for
the survey. Hence, we take a shortcut. What should
be the distance of two adjacent distributions p and
q? The most reasonable answer is the weighted
Kullback-Leibler divergence

J(p, q) = Dp‖q +Dq‖p

=

∫
p(x) log

p(x)

q(x)
dx +

∫
p(x) log

p(x)

q(x)
dx,

since it quantifies average additional utility if we
swap the distributions. Now consider an infinitesimal
movement along the curve γ(t). The corresponding
change of coordinates is from θ to θ + θ̇∆t and the
distance formula gives

d(p, q)2 ≈ ∆t2 ‖γ̇(t)‖2
= ∆t2

n∑

i,j=1

θ̇iθ̇j

〈 ∂

∂θi
,
∂

∂θj

〉

On the other hand, we expect d(p, q)2 = J(p, q) and
under mild regularity conditions (see [4, p.26–28])

J(p, q) ≈ ∆t2
n∑

i,j=1

θ̇iθ̇jgij ,

where gij are the Fisher information matrix entries

gij =

∫
p(x) · ∂`(x|θ)

∂θi
· ∂`(x|θ)

∂θj
dx.

Hence, the scalar product is defined via Fisher infor-
mation matrix 〈

∂
∂θi
, ∂

∂θj

〉
= gij .

Now, the geometry of the statistical manifold is com-
plete and we proceed with a discussion about heat
diffusion kernels.

4 Why heat diffusion?

The most suitable kernels in statistics are Mercer ker-
nels. A Mercer is defined via (continuous) transfor-
mation φ from a data space to a high dimensional
Euclidean space. Mercer kernels are used together
with support vector machines. Recall, that support
vector machines use a transformation φ to convert
data to linearly separable sets and the Mercer kernel
K(x,y) = 〈φ(x), φ(y)〉 allows to calculate necessary
quantities without computing the map φ.

In first glance, the geodesic distance d(p, q) seems
a natural starting point for a suitable Mercer kernel.
Namely, the map φ should preserve distances

d(x,y)2 = 〈φ(x) − φ(y), φ(x) − φ(y)〉
or equivalently

K(x,y) =
d2(x,y) − d2(x,o) − d2(y,o)

2
, φ(o) = 0.

But generally there are no continuous transforma-
tions φ that would embed the manifold into Euclid
space so that the distances are preserved. For ex-
ample consider a sphere. There are infinitely many
shortest paths between antipodes, but in the Eu-
clidean space there is only one shortest path between
two points. Hence, no continuous transformation to
Euclid space can preserve metrics.

A heat diffusion kernel seems a good alternative.
First, kernels still capture the metric of the mani-
fold. Secondly, they coincide with Gaussian kernels
in R

n and thirdly kernels that are closely related with
heat diffusion have been used before [3]. If a heat dif-
fusion kernel is used with support vector machines,
we get a remarkably clear interpretation. A tempera-
ture of a manifold point is defined as a result of heat
diffusion process, where small areas around training
points have initial temperature proportional to label-
ing and importance in classification. The initial tem-
perature is set to zero in all other areas. The classi-
fication rule divides points to two classes: “hot” and
“cool” points. Intuitively, close points in the manifold
have very similar temperature and will have same la-
bels. Since the temperature equalizes over the time, a
wide spectrum of kernels from very sensitive to com-
pletely robust are available.
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The heat diffusion is governed by partial differen-
tial equations

∂f

∂t
− ∆f = 0

f(x, 0) = f(x)
(1)

augmented with suitable boundary conditions, if the
manifold has a boundary. The general Laplace oper-
ator is rather complex

∆f = detG−1/2
n∑

i,j=1

∂

∂θj

[
gij detG1/2 ∂f

∂θi

]

where gij are elements of the inverse Fisher matrix G.
Note that the operator ∆ is completely determined
by the geometry of the manifold. In the Euclidean
space R

n the definition simplifies to usual notation

∆f =
∂2f

∂x2
1

+ · · · + ∂2f

∂x2
n

.

and it is straightforward to verify

f(x, t) = (4π)−n/2

∫
exp
(
−‖x−y‖2

4t

)
f(y)dy

is a solution to heat diffusion problem with the initial
temperature f . The inner term

Kt(x,y) = exp
(
−‖x−y‖2

4t

)

corresponds to Gaussian kernel and the discriminant
function of SVM corresponds to heat diffusion from
point sources xi. In that sense, heat diffusion on sta-
tistical manifolds is simple generalization of Gaussian
kernels.

Formally, a heat diffusion kernel is a parametric
function K : P × P × R → R such that for all ini-
tial conditions f the solution of equations (1) can be
obtained as an integral

f(x, t) =

∫
K(x,y, t)f(y)dy.

The existence of such kernel is guaranteed.

Theorem 1. Let M be a complete Riemannian
manifold. Then there exists a kernel function K (heat
kernel), which satisfies the following properties:
(1) K(x,y, t) = K(y,x, t);
(2) limt→0K(x,y, t) = δ(x,y);
(3) (∆ − ∂

∂t )K(x,y, t) = 0;
(4) K(x,y, t) =

∫
K(x, z, t− s)K(z,y, s)dz.

The completeness assumption is equivalent to the
assumption that all bounded closed sets on the man-
ifold are compact. In other words, all limits remain
in the manifold and every sequence has a convergent
subsequence. Or equivalently J(p, q) → 0, if q con-
verges parameter-wise to p. The assumption is rather
weak and is fulfilled by many distribution families.
Properties (2) and (3) assure that the function f(x, t)
is a sought solution to equations (1). Properties (1)
and (4) assure that Kt(x,y) = K(x,y, t) is a proper
Mercer kernel, as a symmetric and positively definite
operator.

5 Approximation of heat kernel

We have seen that the Gaussian kernels are also heat
kernels. But closed forms of heat kernels are rare.
Usually, we can only seek an approximation

Kt(x,y) ≈ K
(m)
t = (4πt)−n/2 exp

(
−d2(x,y)

4t

)

·
[
ψ0(x,y) + ψ1(x,y)t+ · · · + ψm(x,y)tm

]
.

Intuitively, terms ψ0, . . . , ψm correct distortion from
a flat Euclidean geometry. Let r = d(x,y), then we
can express ψi(x, ·) = ψi(r) and the terms ψi can be
computed by recursive equations

ψ0 =
(√

det G
rn−1

)−1/2

ψk = r−kψ0

∫ r

0

ψ−1
0 (∆ψk−1)s

k−1ds,

where the residue term is

(
∆ − ∂

∂t

)
K

(m)
t = (tm∆ψm)(4πt)−n/2 exp

(
−r2/4t

)
.

Hence, first m terms allow to obtain approxima-

tion Kt(x,y) = K
(m)
t (x,y) + O(tm) provided ψm
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is smooth. Of course, the approximation is valid for
ε-neighborhood ε < 1 and generally the approxima-

tion K
(m)
t is not positively definite unless t ∈ [0, ε).

Fortunately, estimates about ε can be obtained.

6 Geometry of multinomials

In principle, the sufficient approximations of heat
kernel can derived. However, practical details can
be quite messy. Next, we derive appropriate kernel
approximation for multinomial family. We consider
the multinomial distribution with n+1 different out-
comes. The usual parameterization

Θ = {(θ1, . . . , θn) ∈ R
n, θi > 0, θ1 + · · · + θn ≤ 1}

corresponds to n dimensional simplex. Let x =
(x1, . . . , xn+1) be the indicator of a single draw, i.e.
xi = 1 iff the the ith event has happened. Then

∂`(x|θ)
∂θi

=
xi

θi
− xn+1

θn+1

∂2`(x|θ)
∂θi∂θj

= −xi

θ2i
δi,j −

xn+1

θ2n+1

,

where θn+1 = 1 − θ1 − · · · − θn. The equation

Ex

[
∂`(x|θ)

∂θi
· ∂`(x|θ)

∂θj

]
= −Ex

[
∂2`(x|θ)
∂θi∂θj

]

allows to express Fisher matrix elements

gij(θ1, . . . , θn) =

{
1/θn+1, if i 6= j,

1/θi + 1/θn+1, if i = j.

It is rather hard to compute geodesic distances on the
simplex Θ ⊂ R

n and therefore we define two map-
pings that ease the task.

A map F : P → Q is called isometry if it satisfies
two requirements: (1) F must be C∞ differentiable
w.r.t. θ; (2) all curves γ(t) and γ∗(t) = F (γ(t)) must
have same length. The second condition is satisfied
iff ‖γ̇(t)‖ = ‖γ̇∗(t)‖.

By adding redundant coordinate θn+1 and redefin-
ing geometry

gij(θ1, . . . , θn+1) =

{
0, if i 6= j,

1/θi, if i = j.

we get an isometric embedding i : R
n → R

n+1, since
the length of the vectors are preserved

n∑

i,j=1

θ̇iθ̇jgij =

n∑

i=1

θ̇2i
θi

+
1

θn+1

(
n∑

i=1

θ̇i

)2

=

n+1∑

i=1

θ̇2i
θi
.

Intuitively, this means that tangent vectors ∂
∂θi

are
orthogonal. But we can go even further and build a
model of P in Euclidean space R

n+1 that preserves
distances. The target set will be n + 1 dimensional
positive orthant

S+ =
{
(x1, . . . , xn+1) : x2

1 + · · · + x2
n+1 = 4

}
.

and the isometry

F (θ1, . . . , θn+1) =
(
2
√
θ1, . . . , 2

√
θn+1

)
.

Since the tangent vector is

f(γ∗(t))′ =
[
ẋ1 ·

(
∂

∂x1

)
γ∗

+ · · · + ẋn+1 ·
(

∂
∂xn+1

)
γ∗

]
(f),

where x1(t), . . . , xn+1(t) are Cartesian coordinates of
γ∗(t), the lengths are preserved only if

‖γ̇∗(t)‖2
= ẋ1(t)

2 + · · · + ẋn+1(t)
2 = ‖γ̇(t)‖2

.

A simple calculation proves isometry

‖γ̇∗(t)‖2
=

(
θ̇1(t)√
θ1(t)

)2

+ · · · +
(

θ̇n+1(t)√
θn+1

)2

= θ̇1(t)
2

θ1(t)
+ · · · + θ̇n+1(t)

2

θn(t) = ‖γ̇(t)‖2
.

The corresponding maps have a nice geometrical
meaning, see Figure 2. The isometry provides novel
insight for calculating distances between θ and θ′,
also depicted by Figure 2. As the shortest path be-
tween two points is an arc of the great circle, the
distance becomes easily computable

d(θ, θ′) = 2 arccos(〈F (θ), F (θ′)〉)
= 2 arccos

(√
θ1θ′1 + · · · +

√
θn+1θ′n+1

)
.

The corresponding metric is illustrated by Figure 3.
The more rapid distance rate in the corners has intu-
itive explanation—slight changes in parameters cause
significant change in relative entropy (utility), if some
event is almost certain.
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Figure 2: Geometrical interpretation of isometry

Figure 2: Equal distance contours on P2 from the upper right edge (left column), the center

(center column), and lower right corner (right column). The distances are computed using

the Fisher information metric g (top row) or the Euclidean metric (bottom row).

F−1 is

hθ(u, v) = gθ2/4

(
F−1
∗

n+1∑

k=1

ukek, F
−1
∗

n+1∑

l=1

vlel

)
(61)

=
n+1∑

k=1

n+1∑

l=1

ukvl gθ2/4(F
−1
∗ ek, F

−1
∗ el) (62)

=

n+1∑

k=1

n+1∑

l=1

ukvl

∑

i

4

θ2
i

(F−1
∗ ek)i (F

−1
∗ el)i (63)

=
n+1∑

k=1

n+1∑

l=1

ukvl

∑

i

4

θ2
i

θkδki

2

θlδli

2
(64)

=
n+1∑

i=1

uivi (65)

Since the transformation F : (Pn, g) → (S+
n , h) is an isometry, the geodesic distance

d(θ, θ′) on Pn may be computed as the shortest curve on S+
n connecting F (θ) and F (θ′).

These shortest curves are portions of great circles—the intersection of a two dimensional

15

Figure 3: Iso-distant lines: above multinomial geom-
etry, below Euclidean geometry.

7 Kernel construction

Finally, we are in position to define an approxima-
tion of the heat diffusion kernel. Nontrivial deriva-
tion shows

ψ0(r) = 1 +
(n− 1)

12
r2 +

(n− 1)(5n− 1)

1440
r4 +O(r6)

and the first order approximation is

K
(0)
t (θ, θ′) = (4πt)−n/2 exp

(
− arccos2(

√
θ,
√

θ′

t

)
.

The approximation has good properties compared

with higher order approximationsK
(m)
t , m ≥ 1, since

K
(0)
t remains small for large distances.
As a theoretical side-mark the simplex is not a com-

plete Riemann manifold. Moreover, the border has
non-differentiable angles. Therefore, for theoretical
investigation these angles must be rounded—certain
and impossible events are removed from model.

This allows to find bounds of covering numbers
N (ε,FR), where FR corresponds to linear classifier
in high dimensional space with bounded weight vec-
tor ‖w‖ ≤ R. The cover numbers allow to estimate
the difference of average classification risk and em-
pirical risk (training error). These results are based
on advanced issues of statistical learning theory and
functional analysis. Compared with the usual VC-
dimension approach, the result are much sharper but
in the same time more obscure. Thus we cite only
the main result.

Informal statement The heat-kernel have es-
sentially the same asymptotic generalization perfor-
mance as Gaussian kernels with the same dimen-
sion.

8 Experimental results

We cite here results of the report [6]. A support vec-
tor machine with approximation of multinomial ker-
nel was applied to Reuters-21570 and WebKB data.
Both frequency representation and inverse document
frequency weighting was used. In all reported in-
stances heat kernel gave better results than Gaussian
kernel. Some results are given in Figure 4.

9 Conclusions

Good kernels for real valued vectors have been known
for years. Therefore, a big effort has been made to
find natural ways to define kernels for discrete data
generated by random processes. Information geome-
try gives a theoretically justified approach. The main
advantages are independence of parameterization and
theoretical machinery for estimating generalization
properties. Heat kernels are also natural general-
izations of Gaussian kernels. Empirical results with
multinomial distributions indicate that heat diffusion
kernel out-performs Gaussian kernels in text classifi-
cation tasks.

The most serious downside is conceptual complex-
ity. The general concept of statistical manifolds is not
easy to grasp. Secondly, only few instances of closed
form solutions of heat diffusion equation is known.
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Hence, generalizing the results to more complicated
models requires significant amount of mathematical
knowledge.
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Figure 4: Experimental results on the Reuters corpus, using SVMs for linear (dotted) and Gaussian (dash-
dotted) kernels, compared with the diffusion (solid). The classes moneyFx (top) and grain (bottom) are
labeled as positive, and the class earn is labeled negative. The left column uses tf representation and the
right column uses tfidf representation [6, p.28].
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Figure 8: Experimental results on the Reuters corpus, using SVMs for linear (dotted) and

Gaussian (dash-dotted) kernels, compared with the diffusion (solid). The classes moneyFx

(top) and grain (bottom) are labeled as positive, and the class earn is labeled negative. The

left column uses tf representation and the right column uses tfidf representation.
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