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1 Introduction

Collins, Dasgupta, and Shcapire present a way to generalize the popuar di-
mensionality reduction method principal component analysis (PCA) to ex-
ponential families of distributions [1]. First they present a probabilistic inter-
pretation of PCA that will lead to the generalization. Exponential families,
generalized linear models (GLM), and Bregman distances are preliminaries
that are briefly studied before formulating the generalized PCA. A minimiza-
tion algorithm is presented and two simple examples are discussed.

Perhaps the most videly used formulation of the PCA problem is as a
search for a linear subspace that passes near all the data points. For given
data xi ∈ Rd the lower dimensional subspace that minimizes the sum of
squared distances between xi and their projections θi to it is found. The
cost function is the sum of euclidean distances:

n∑

i=1

‖xi − θi‖2. (1)

In a probabilistic alternative each xi is seen as drawn from a unit gaussian
Pθi with unknown mean θi. Maximizing the likelihood of the data subject
to the condition that θi belong to a low dimensional subspace is equivalent
to equation (1). In this view the data points xi are noise-corrupted versions
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of actual points θi in a linear subspace, where the noise is understood to be
gaussian noise with unit variance.

This interpretation that contains gaussian noise is not natural e.g. when
the data is discrete valued or nonnegative. Gaussian distribution is just one of
the distributions that make up the exponential family, and it is the particular
one that suits real valued data. Other distributions in the exponential family
can describe other types of data, e.g. Poisson—integer, Bernoulli—binary.

Collins et. al. show that a general dimensionality reduction scheme for
the exponential family can be devised. In many parts of the generalization
the dimensions of the data are treated separately, and it turns out that hybrid
cases where the data contains different types of dimensions are permitted. In
general there is a crucial difference to ordinary PCA: the natural parameter
space of the distribution family from which the data is drawn and the space
of the data are not the same. A mapping between these is needed. This
difference can be bridged after looking at generalized linear models (GLM),
exponential families and Bregman distances.

2 Some Theoretical Background

In the exponential family1 the conditional probability of a data point x is
given by

logP (x|θ) = logPo(x) + xθ −G(θ), (2)

where θ is the natural parameter, andG(θ) provides normalization. Therefore
G(θ) must be given by

G(θ) = log
∑

x∈χ
P0(x)exθ, (3)

where χ is the domain of x, and the sum is naturally replaced by an integral
if x is continuous valued.

An important funtion is the derivative of G(θ), which is denoted by g(θ).
g(θ) gives the expectation value of x given the parameter value θ

g(θ)
.
= G′(θ) = E[x|θ]. (4)

g(θ) is called the expectation parameter.

1The term exponential family is used both to describe all distributions that can be
written in the form of equation (2), and for particular families of distributions parameter-
ized by θ, where all the functions in the this equation are fixed. There should be no room
for confusion.
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As an example it is shown how normal and Bernoulli distributions fit this
picture. The normal distribution can be written as logP (x|µ) = − log

√
2π−

1
2
(x − µ)2. From this we can read logP0(x) = − log

√
2π − x2/2, θ = µ,

and G(θ) = θ2/2. In the Bernoulli distribution the probability is usually
written as P (x|p) = px(1 − p)(1−x), where p ∈ [0, 1] and x ∈ {0, 1}. This is
translated to the exponential form as follows: logP0(x) = 1, θ = log p

1−p , and

G(θ) = log(1 + eθ).
In the previous discussion the parameter θ and the data point x have

both been taken as one-dimensional. Although we are deriving a dimen-
sionality reduction method we do not need to consider the multidimensional
case here because each data dimension has its own unique natural parameter
dimension. The Bregman distance that is derived later and used as a loss
function can be computed as a sum of the componentwise distances. The
vector version of much of the following discussion can be found in [2].

2.1 Generalized Linear Models

The generalization of PCA by Collins et. al. is analogous to the way in
which generalized linear models (GLM’s) generalize regression. In a regres-
sion problem a group of training samples (xi, yi) is given. The problem is
to predict y when given x. In linear regression yi is approximated by β · xi.
The parameter β is set to arg minβ∈Rd

∑
i(yi − β · xi)2.

In a GLM h(β ·xi) is taken to approximate the expectation parameter of
the exponential model. h is the inverse of the “link function”. The coice h
= g (as defined before) is called “canonical link”. With canonical link β · xi
is directly an approximation for the natural parameters of the exponential
model.

2.2 Bregman Distances

In the generalized PCA the euclidean distances of PCA are replaced with
Bregman distances related to the underlying exponential probability distri-
bution. Bregman distances are defined as follows: Let F : ∆ → R be a
differentiable and strictly convex function in a convex set ∆ ⊂ R. The Breg-
man distance associated with F , defined for points p, q ∈ ∆ is

BF (p‖q) .
= F (p)− F (q)− f(q)(p− q), (5)

where f(x) = F ′(x). For exponential family the log-likelihood logP (x|θ) is
directly related to a Bregman distance. Following the discussion in [2], a
“dual” function F can be defined through G by

F (g(θ)) +G(θ) = g(θ)θ. (6)
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Normal Bernoulli Poisson

χ R {0,1} {0,1. . .∞}
G(θ) θ2/2 log(1 + eθ) eθ

g(θ) θ eθ

1+eθ
eθ

F (x) x2/2 x log(x) + (1− x) log(1− x) x log(x)− x
f(x) x log x

1−x log x

BF (p‖q) (p− q)2/2 p log p
q + (1− p) log 1−p

1−q p log p
q + q − p

BF (x‖g(θ)) (x− θ)2/2 log(1 + e−x
∗θ), where x∗ = 2x− 1 eθ − xθ + x log x− x

Table 1: The derivation of a Bregman distance related to the log-likelihood
of various exponential family distributions.

It turns out that

− logP (x|θ) = − logP0(x)− F (x) +BF (x‖g(θ)), (7)

where F is the dual of G as defined above, and BF the Bregman distance
derived from it. This form is very useful for likelihood maximization because
on the right hand side there is θ dependence only in the Bregman distance
term, and the other terms can therefore be neglected in optimization. We
have here arrived at a systematic procedure to derive an expression for log-
likelihood in exponential family in terms of a Bregman distance. The results
of applying this procedure to some distributions is shown in table 1.

3 Generalized PCA

In an analogy with the probabilistic interpretation of ordinary PCA, the idea
of the generalized algorithm is to find natural parameters θi that lie in a low
dimensional subspace, and are close to the data xi in the sense that the
likelihood is maximized.

More formally the problem is to search for a basis v1,. . . ,vl in Rd, and
a representation of each θi as a linear combination of these elements θi =∑

k aikvk in such a way that the likelihood of the data is mazimized. As dis-
cussed previously this amounts to minimizing the sum of Bregman distances
from the data to the expectation images g(θ) of the natural parameters θ.

In describing the method and a minimization algorithm the following
notations are used. Let X be the n× d matrix with the data points xi as its
rows. Let V be the l × d matrix with rows vk, and A the n× l matrix with
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elements aik. Then the natural parameters θi are in the rows of the matrix
Θ = AV.

In the generalized PCA, the loss function is taken to be the negative log-
likelihood of the data, which depends of the matrix of the natural parameters
Θ, and therefore on the matrices V, and A:

L(V,A) = − logP (X|A,V) = −
∑

i

∑

j

logP (xij|θij) (8)

Equation (7) leads to the following form for the loss function

L(V,A) =
∑

i

∑

j

BF (xij|| g(θij)) =
∑

i

BF (xi|| g(θi)) (9)

The generalized PCA can be seen as a search for low dimensional surface
Q(V), that passes near all the points xi (in terms of the Bregman distance
BF ), given by by Q(V) = {g(aV)|a ∈ Rl}.

As a summary:

• The loss function is the negative log likelihood

• The matrix Θ = AV is the matrix of natural parameter values

• The derivative g(θ) of G(θ) maps the natural parameters to a matrix
of expectation parameters, g(AV)

• The function F is derived in terms of G, and from it further the Breg-
man distance BF .

• Now the loss can be written in terms of the Bregman distances BF

alone.

4 Algorithm

The minimization algorithm the writers propose is discussed in this section.
The simplest case is a search for a one dimensional subspace (l = 1). In
this case the minimum of the loss function is searched for by starting with
randomized V and iterating the following two steps until convergence is ob-
served.

For i = 1 . . . n : a
(t)
i = arg mina∈R

∑
j BF (xij||g(av

(t−1)
j ))

For j = 1 . . . d : v
(t)
j = arg minv∈R

∑
iBF (xij||g(ativ)
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Each loop here consists of n + d problems, each of which is essentially a
very simple GLM regression problem (simple because there is only one pa-
rameter to be optimized over). The loss is convex in eihter of its argumets
alone, but not in general when they are considered together. Thus, conver-
gence is not easy to prove. The gaussian case is known better than others,
and there it is known that the hessian of the loss is only positive semi-definite
for the global minimum [3]. Whether this is true in the general case is an
open problem as well as the convergence to the global optimum in a general
case. The algorithm has behaved well in this respect in preliminary numerical
studies.

One possibility to multiple component optimization is to cycle through
the l components, keeping all but one fixed at any given time. This approach
leads to the algorithm below:

Multiple rounds over the components are needed because unlike in odi-
nary PCA the later components affect the most important components.

5 Examples

The authors give two very simple illustrative examples which are re-
peated here. First they consider finding a one-dimensional subspace of two-
dimensional data, using the exponential distribution suited for nonnegative
data. In this case the minimization procedure can be written in closed form
and it turns out that the mapping g(θ) from natural parameters to the expec-
tation parameters is such that the image of a linear subspace of the natural
parameters is a straight line. This is similar as in ordinary PCA, and it is
interesting to compare these cases.
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Figure 1: Comparison of regular PCA and the PCA for exponential distri-
bution.

Figure 1 shows the comparison. On the left the data points fit well on a
straight line, and both methods give similar results. On the right there are
some outliers, and it turns out that ordinary PCA is much more sensitive to
them than the exponential variant.

Figure 2: Projections from 3- to 1-dimensional space with Bernoulli PCA.
The data points are marked by the capital letters, and their projections to
the curve (as given by the minimum Bregman distance) are marked with the
primed capitals.

The other example is finding a one dimensional subspace of the parame-
ters of three-dimensional Bernoulli distribution. In this case the linear sub-
space of the natural parameters, is mapped by g(θ) to a nonlinear curve on
the space of the data. Results for this toy experiment are shown in figure
5. In this case the choice of data points is perhaps a bit unfortunate as they
are about as far away from a common subspace as possible. The example
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thus fails to illustrate the form of the solution in a case where dimensionality
reduction would be possible without severe distortion.
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