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1 Introduction

In this paper, I summarize the article “(Semi-
)Predictive Discretization During Model Selection” by
Harald Steck and Tommi S. Jaakkola [6]. The arti-
cle deals with data discretization — more specifically
it introduces a method that can be used to select op-
timal discretization while selecting the structure of a
graphical model.

1.1 Discretization

Many data sets in machine learning are given as contin-
uous features, i.e. they consist of vectors of arbitrary
real values. Discretization means a mapping from the
continuous values into a set of discrete values. Here
only deterministic discretizations are considered, i.e.
for each real value we have exactly one discrete value.

Data discretization is needed for various reasons. One
reason is that there are many machine learning algo-
rithms that can only be applied to discrete data. In
order to use those algorithms, we need to discretize the
data. We might also want to do that for solely compu-
tational reasons; some problems are easier to compute
for discrete variables. Finally, if we know that our data
is discrete, but we only have noisy continuous measure-
ments, we would naturally want to discretize the data
to correspond with the underlying discrete values.

The discretization is usually done as a preprocessing
step, before the actual analysis. In theory, we can use
any clustering algorithm for data discretization, but
there is no reason why such methods would provide an
optimal discretization. Several methods have been de-
veloped to create, in some sense, optimal discretization
for multivariate data sets. The basic idea behind most
such methods is to try to preserve the information of
other variables provided by one. For example, [1] pro-
posed a method where the goal is to retain the class
entropy, and [5] gave similar approach for unlabeled
data sets.

1.2 Graphical models

Graphical model means a Bayesian network that mod-
els a set of variables by a graph of dependencies and
conditional probabilities. Given N samples of each of
the n variables, the task is to find the structure of
the graph (denoted by m). Many methods have been
suggested for the problem of finding the correct model
structure in the case of discrete variables. There are
also some methods for special cases of continuous vari-
ables (e.g all distributions are Gaussian).

2 Discretization During Model
Selection

The article proposes a method for discretizing the data
during the model selection, instead of doint it as a pre-
processing step. The idea is applied to graphical mod-
els, and the task is to learn the graph structure and
the discretization at the same time. A few methods
have earlier been suggested for the same task [2, 4],
but the authors claim that the proposed methods are
computationally too heavy to be used in practice.

The n continuous variables are here denoted by Y =
(Y1,...,Y,), and the discretization policy by A =
(A1, ..., Ar). Each variable is discretized according to
a sequence of threshold values Ay = (A1, ..oy Mer—1)
where 7, is the number of discretization levels for
kth variable. The discretized variables are denoted
by X = (Xi,...,X,), and they are obtained from
Y by the mappings fao : ¥ — X. The discretized
values xj, are then given by fa, (yx), which is j for
A1 S Yk < Ak

2.1 Sequential Approach

More formally, the task is to maximize the likelihood
of observed continuous data D given the discretization
policy A and the model structure m. The likelihood is



here computed in a sequential manner,

N
p(DIA,m) = [[p(y? D1, A, m) (1)

=1

where DO-D = (y0=1 _ 41) denotes the data
points seen prior to step i along the sequence.

Because the discretization is deterministic, we can fac-
tor the predictive distribution as

ply? DD A m) = p(y D]z, A)p(a@ DU m, A)

(2)
Assuming the dependences among the continuous vari-
ables Y; are described by the underlying discretized
distribution p(X|D, A, m), the continuous variables Y’
are independent given X,

p(y?)2@, 8) = T p(u12@, A) . (3)
k=1

The second term in (2) denotes the predictive distribu-
tion of a discrete variable given the previous discrete
variables. As stated earlier, various methods for opti-
mizing the model structure exist for discrete data, and
we could use them is this was the only term in the
cost. However, we also have the first term that rep-
resents the distribution of continuous values given the
discretized values, and we need to study that further.

2.2 The Finest Grid

In order to keep the problematic term computable, we
need a concept called finest grid. By that we mean
(for each variable) a discretization sequence € that
discretizes the data set such that there is exactly one
data point in each discretization level. In other words,
there is one threshold between any two closest data
samples, and we can choose whichever point we want.

We restrict our actual discretization policy A so that
the threshold values are chosen from the set of thresh-
old values of the finest grid. Note that this is not ac-
tually a restriction, because we were able to select the
threshold values of ) freely between the data points.

If we denote by Z the discretized value according to the
finest grid, we can factor the distribution of continuous
values given the discrete ones by first mapping X to Z
and then Z to Y. This gives

P(yz(:)|x(i)7/\k, Q) = P(yl(:)|zl(:), Qk)P(ZJ(:)W(i)aAk, Q) ,
(4)

where everything is now conditional on the particular
finest grid we chose.

Here the authors make one assumption, namely that
the probability mass predicted for 2" is divided evenly
among the cells z(*) of the finest grid that are mapped
to the particular x. That is,

P20, Ay, ) = (5)

where N (x,(;)) is the number of data points in the dis-
(@

" cretization level x).7.

3 Semi-Predictive Discretiza-

tion

Given the previous two assumptions leading to (3) and
(5), we can write the likelihood (1) in a form that
makes computation possible. However, there is a slight
problem. The likelihood is derived in the sequential
manner, and every prediction is made only based on
previous samples. Unfortunately, we need the finest
grid in order to compute the predictions, and it is
based on the whole data set. In this sense, the cost is
not fully predictive, and therefore the resulting method
is called semi-predictive discretization.

Plugging (2), (3), (4) and (5) into (1), we finally get

N N
p(DIA, m, Q) = p(Dp|m) <H J

i=11¢

)
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( p(y;%zé“,m)). (6)
7=117=1

This likelihood consists of three terms that are studied
next.

The first term is the likelihood given discretized data.
This can be maximized with respect to m relatively
easily, as everything is discrete. Such methods are not
within the scope of this summary.

The next term is because of the mapping from X to Z,
and is computable because of the assumption of even
distribution. We can also write the term (times con-
stant) as the reciprocal of the maximum likelihood of
an empty graph (all variables are independent). De-
note that by p(DA|9A7 Mempty ), Where 6 is the maximum
likelihood estimate of the parameters 6,, = N(z3)/N.

The third term denotes the mapping from Z to Y. It
is the only term in the likelihood that depends on the



metric of the original continuous data space and the
particular finest grid we chose. However, it does not
depend on A or m, and thus it is irrelevant when we
are comparing discretizations or model structures.

By dropping the last term and taking a logarithm, we
get the cost function of semi-predictive discretization:

lsp(A,m) = logp(Da|m) — log p(DA|0, Mempty)

=logp(Dalm) + N Y H(p(Xy)) . (7)
k=1

On the second line, the likelihood of the empty graph
is written as the entropies of the discrete distributions.
The first term measures the ability to predict the dis-
crete variables, and it is naturally easier if we have
fewer discretization levels (with one level we get al-
ways correct predictions). This is compensated by the
second term, which penalizes from too few discretiza-
tion levels.

The cost has a few interesting properties. First, it
depends only on the counts of samples at different dis-
cretization levels, which makes computations simple.
Second, it is independent of the particular choice of
the finest grid, which justifies the arbitrary selection of
the thresholds. Third, it is independent of the metric
in the continuous space, rendering the use of prepro-
cessing methods unnecessary.

4 Predictive Discretization

The semi-predictive discretization method was not
fully justified, because the finest grid was based on the
whole data. Fortunately, that is not really necessary.
We can derive a similar cost along the same lines by
allowing the finest grid to adapt with new data sam-
ples. The details can be found in the original paper,
and the resulting cost function is

Lp(A,m) = logp(Da|m) — log G(D, A) ,

where

n 1 -1
)= (H 11 r(N(az;“))) |

k=1 xg

The only difference in the cost functions is in the
penalty term. It can be shown that the predictive
distribution penalizes small numbers of discretization
levels slightly more, and thus favors somewhat finer
discretization. It is not stated in the paper explicitly,

but it seems we should always use the predictive dis-
cretization method, because it is theoretically valid.
The semi-predictive discretization is retained because
it is easier to present and understand.

5 Empirical Experiments

The predictive discretization method is briefly tested
in the paper in one application. The data is a gene
expression data concerning the pheromone response
pathway in yeast, and it consists of 320 measurements
of 32 continuous variables (genes) and one binary vari-
able (mating type). The same data has been analyzed
earlier [3] with discretization as a preprocessing step,
and the resulting model structure resembled closely a
naive-Bayes network with the mating type as a root
variable and other variables pretty much independent
from each other.

The network structure obtained with predictive dis-
cretization is completely different. There are two clear
groups of variables that are strongly interconnected,
and according to the authors these correspond to two
different mating types. In other words, the model
structure seems to be biologically plausible, but fur-
ther analysis would be required to say whether it is in
some sense correct or not.

6 Conclusions

The main conclusion to be drawn from the paper (es-
pecially the experiment section) is that the discretiza-
tion drastically affects the resulting model structure.
Therefore we cannot just select some discretization
method, but we need to really try to find a discretiza-
tion that preserves the dependencies. This makes dis-
cretization an important field of study.

The paper also has some good ideas that can possibly
be used in other kinds of model learning problems.
The concept of finest grid made here computations
relatively simple by making the cost function depend
only on the counts of data samples. The finest grid
could be used in other situations also, or we could use
other tricks to transform the cost to depend only on
the counts. If the cost depends on the actual parti-
tion on the data samples into the discretization levels,
the number of possible discretizations is exponential
in the number of samples. Dependence on only the
counts reduces this significantly.



Another interesting observation is the form of the final
cost function. It consists of the likelihood of the dis-
crete data and a separate penalty term for too coarse
discretizations. Searching for such form of cost func-
tion in other approaches could be beneficial, because
the part for discrete data is often relatively easy to
compute in cases where we want to discretize data.
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