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1 Introduction

The two papers summarized here both consider the task of clustering or mod-
eling discrete data like text documents. In brief, Latent Diriclet Allocation
(LDA), introduced by Blei et al [1], is a generative model where the data is
generated from combinations of latent distributions or topics. Buntine [2] later
gave a more general interpretation of the model under the name Multinomial
PCA.

2 Latent Dirichlet Allocation

In Latent Dirichlet Allocation, each document is generated by a two-step pro-
cess: 1) Sample a K-dimensional vector 6 of multinomial probabilities from a
Dirichlet distribution with parameters a. 2) for each word in the document, first
sample a topic z, with probabilities Multinomial(f), that is, p(z, = k) = 6.
Then sample the actual word w,, with probabilities p(wy|2,), which are param-
eterized as a k x |V| matrix 8.

An alternative view is that the first step samples a particular weighted aver-
age (convex combination) of the word probabilities in the topics, and the words
are then generated from that distribution.

Notice that the document is not generated from a single topic: the topic is
sampled anew for each word—however, the topic proportions are sampled once
per document. This yields the following likelihood for a document with word
vector w:
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Related models. LDA is related to a simple mizture of unigrams model,
where each document is generated from a single topic. Such a process yields the
following likelihood:

k N
pw) =) (H p(wn|2)> p(2) . (2)
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However, this simpler model only has one parameter less than LDA.



Another related model is probabilistic Latent Semantic Indexing (pLSI).
There, the document index and its words are independent given the topic:

k

p(d,w) =Y p(w|z)p(z|d)p(d) 3)
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where p(z|d) is the topic distribution in the document. This model allows multi-
ple topics per document; however, since d is just a document index, the learning
may overfit the training documents without tempering heuristics.

Variational inference. The likelihood (1) is too complex to compute or op-
timize directly. Instead, Blei et al. use variational approximation, i.e. they
optimize a lower bound of the likelihood:

9(0,2;7,9)
> E {logp(w|z; 8) + log p(z|6) + logp(6; a) — logq(0,2;v,4)}  (4)

where ¢ is an approximation for the distribution of the hidden (latent) data.
Here q(0,2;v,¢) = q(8;7) [1,, ¢(2n; ¢n) is a factorized distribution where 6 is
Dirichlet-distributed w1th parameters v and z are Multinomial-distributed with
parameters ¢. For the whole data D the log-likelihood is bounded as

logp(wia, §) = log | 37 plovlz )p(alt)p(6s0) 502

logp(D Z (Eq,, {logp(8,2z,w)} — E,, {loggm(0,2)}) . (5)

This bound is optimized by an Expectation Maximization (EM) algorithm
where the E-step is variational. That is, in the E step the approximation is
optimized by alternating the equations
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and in the M step we set (3;; 271\;1:1 EL:Z;' Gmniwl,,, and optimize the a; by
the Newton-Raphson method.

Experiments. Blei et al. test LDA in three tasks: language modeling, doc-
ument classification and collaborative filtering. In the first task, the quality
measure is perplexity, which is is inverse to the per-word likelihood, and is de-
fined as perplexity(Diest) = exp(—_,, 10gP(Wm)/ Y, [Wm|). Results on the
AP and CRAN corpora are shown in Fig. 1. LDA outperformed pLSI and mix-
ture of unigrams models. Given the model, Blei et al. were also able to study
the topics in a particular document (simply find the topics with largest «;, and
the corresponding word distributions from £).
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Figure 1: Perplexity results on the AP (left) and CRAN (right) corpora.
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Figure 2: Left: classification results on WebKB data. Right: collaborative
filtering results on EachMovie data.

In the second task, a separate model p(w|c) was learnt for each class, and for
new documents the classification was chosen by Bayes’ rule (arg max. p(w|c)p(c)).
Results on the WebKB dataset are shown in Fig. 2 (left). LDA outperformed
mixture of unigrams and Naive Bayes.

In the third task, users from the EachMovie dataset have indicated pre-
ferred movies; the task is to predict, for each new user, one unknown preference
based on their other preferences. Results are shown in Fig. 2 (right). LDA
outperformed mixture of unigrams.

3 A New Interpretation: Multinomial PCA

Buntine [2] gives a different interpretation to LDA and related models from the
viewpoint of modeling variation. He starts by making an analogue to Principal
Component Analysis (PCA), which can be interpreted as a generative model
for continuous data x.

PCA can be seen as the solution to optimizing the following model for x:

m ~ Gaussian(0,Ix) (M)
X ~ Ga,ussia.n(ﬂm + K, IJ)



This is a two-step generative process where the hidden (latent) variable m is
sampled first and the observed features x are sampled with probabilities that
depend on m. Here m effectively creates Gaussian variation along the K direc-
tions specified by the matrix €2, and x adds extra Gaussian variation in all J
directions. When the parameters of the model are optimized for a particular set
of observations, £ will contain the ‘principal components’ of the distribution of
x. In practice they can also be solved as an eigenvalue problem.
For discrete data (also called x), there is a similar generative process:

m ~ Dirichlet(a) or m ~ Entropic(\) (8)
x ~ Multinomial(Qm, L)

This is also a two-step process; the hidden (latent) variable m creates Dirichlet
or Entropic variation in the region between the prototype distributions con-
tained in €2, and x adds extra variation because of the Multinomial sampling
for L discrete words.

Deriving clustering algorithms. Buntine next develops clustering algo-
rithms that optimize the above discrete-data model. The optimization is based
on a variational extension of the standard Expectation Maximization (EM) al-
gorithm. The idea is that although the model is too complex to compute the
marginal likelihood of the data and the parameters directly, one can optimize a
lower bound for it.

The bound is based on a Kullback-Leibler approzimation (also called mean-
field approximation) where a simpler distribution for the hidden variables, de-
noted g(hgy]6), is used to approximate their true distribution p. The bound
is

log p(xq}, ) — K L(q(hgy|0)||p(hyy|xgy, )
= E,(hgy|0){logp(x(y,hpy,0)} + H(g(hg|6) , (9)

where ¢ are the parameters of the true distribution and § are the parameters of
the approximation. Notice that on the first line, only the second term depends
on #, and on the second line, only the first term depends on ¢.

The optimization is done by alternating two steps: 1) make the approxi-
mation g as close as possible to the true distribution (in the sense of minimal
Kullback-Leibler divergence), and 2) optimize the parameters of p based on
the approximation. If the approximation is flexible enough to reach the true
distribution, this kind of optimization is simply the standard EM algorithm.

Optimizing the approximation. The precise form of the first step depends
on the approximation ¢: if it is from the exponential family, the parameter
update is

0
0« 6—MEq(h{}|a){10gp(h{}|X{},¢) +logYi(hgy)} (10)



where Y; is part of ¢ and pu; are dual parameters for 8. On the other hand,
if the approximation is a factorized distribution q(hgy) = ¢1(hgy1)g2(hyy 2)the
update is
1 (hy 1) = exp(Egy (nyy o) {log p(x|0) })
2(hygy 2)  exp(Ey, (nyy ) {logp(x|9)})

If the approximation is factorized and from the exponential family, both forms
are equal.

(11)

The final algorithms. Buntine considers several priors for the hidden vari-
able m (using the notation from the beginning of this Section). Two Dirichlet
priors, a hierarchical prior, and an entropic prior are all possible.

There are also two different cases for the data likelihood: whether ordering
of words is relevant or not. They are identical except for a combinatorial term
which cancels out in the optimization of the approximation. The model for
generating a document of length L is

m ~ Dirichlet(a)
¢ ~ Multinomial(m, L) (12)
Wi, ~ Multinomial(Q,.,cx) for k=1,..., K

where w is a matrix of hidden components versus words, whose element (k, )
tells how many words j were generated from component k. The actual observa-
tion vector r is the sum of w over rows.

Buntine presents two algorithms for optimizing this model. The first opti-
mizes a lower bound of log p(£2, ar), when a factorized approximation ¢(m)g(w)
is used for the hidden variable distribution p(m, w|Q, a,r). The algorithm is

Vidli) € 75 g €XP(Po(Br,i) — Lo(Xy, Br,ia)
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where v and 8 are parameters of the approximation g, the Z are various nor-
malization terms from the distributions, and the last line uses the dual form of
«. This algorithm is an extension of Blei et al.:s LDA, with a prior for 2 and
simpler handling of the Dirichlet parameters.

The second algorithm (not shown here) instead optimizes a lower bound
of logp(, a,m|r), i.e., a single value of the hidden variable m is used. It
is equivalent to pLSI and the Nonnegative Matrix Factorization (NMF; [3])
algorithm.

(13)

Experiments. Buntine does not make additional comparisons but instead
studies the properties of the algorithm on two kinds of data: bag-or-words doc-
ument data (the Reuters-21578 dataset) and bigram data (Google Bigrams).
Three properties are studied: expected components (EC), expected words per
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Figure 3: Properties of components in the Multinomial PCA algorithm.

component (EW /D), and expected components per document (EC/D); the re-
sults are shown in Fig. 3.

Buntine finds that on the document data, a newswire (document) typically
belongs to 2 components, but on the Google Bigram data one word belongs
to several components depending on sample size. He also finds that the use
of priors for the parameters « led to a better match between the expected and
observed component proportions than the maximum likelihood estimates of Blei
et al. Lastly, he finds that the components in the bigram data unfold as more
components are added: for example, general forms like verbs break into people
verbs.

References

[1] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. In T. G. Diet-
terich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Infor-
mation Processing Systems 14, Cambridge, MA, 2002. MIT Press.

[2] W. Buntine. Variational Extensions to EM and Multinomial PCA. In T.
Elomaa, H. Mannila, H. Toivonen, editors, Machine Learning: ECML 2002,
pages 23-34, Springer-Verlag Heidelberg, 2002.

[3] Lee, D., Seung, H. Learning the parts of objects by non-negative matrix
factorization. Nature 401, pages 50-57, 1999.



