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1 Introduction

Let us assume that we have (finite or infinite) paired data in form of (x, c),
where x ∈ RM and c is an integer c ∈ {1, . . . , N}. We refer the vector x as
primary data and the integer c as auxiliary data or class. Our problem is to
cluster primary data such that we use the information in auxiliary data. This
is different than simply to divide the primary data into auxiliary data classes
since we may have different number of clusters and also primary data in a cluster
should be compact.

2 Learning vector quantization

The definition of discriminative clustering is based on learning vector quantiza-
tion (LVQ). The idea is to minimise the average distortion

E =
K∑
j=1

∫
Vj

D(x,mj)p(x)dx, (1)

where K is the number of clusters, mj is the prototype of the cluster j, and
D(x,mj) is the distortion function. The Voronoi cell Vj is defined

x ∈ Vj ⇐⇒ D(x,mj) ≤ D(x,mk), for all k.

Let us now consider the probability of the class given the data point p(c | x).
Assume also a distribution ψ defined on a domain {1, . . . , N}. The Kulback-
Leibler divergence between these two distributions is

DKL =
N∑
i=1

p(c = i | x) log
(
p(c = i | x)

ψ(i)

)
. (2)
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Let us now modify the average distortion. For each cluster j we introduce a dis-
tributional prototype ψj which is a distribution defined on a domain {1, . . . , N}.
These prototypes try to represent the conditional distributions p(c | x) in each
Voronoi cell Vj . Our new average distortion is

EKL =
K∑
j=1

∫
Vj

DKL(p(c | x), ψj)p(x)dx. (3)

However, the Voronoi cells are still defined according to the original distortion
D(x,mj). We choose to use the Euclidean distance as D(x,mj). Thus, the
Voronoi cells are defined

x ∈ Vj ⇐⇒ ‖x−mj‖ ≤ ‖x−mk‖ , for all k.
Our minimisation problem involves finding the optimal distributional prototypes
ψj and the primary data prototypes mj .

3 Finite data

Let us now assume that we have a finite number of data points. The average
distortion in Eq. 3 is not feasible since we do not the probability p(x) and the
conditional probabilities p(c | x). We replace the ∫

Vj
· · · p(x)dx with∑

x∈Vj
and

set p(c | x) to be
p(c = i | x) =

{
1 i = c(x)
0 otherwise .

The distortion transforms into

EKL =
K∑
j=1

∑
x∈Vj

DKL(p(c | x), ψj) = −
K∑
j=1

∑
x∈Vj

logψj(c(x)). (4)

Thus minimising the average distortion is equivalent to maximising

L =
K∑
j=1

∑
x∈Vj

logψj(c(x)) = log
K∏
j=1

∏
x∈Vj

ψj(c(x)) = log p(D | {ψj} , {Vj}).

This is the log-likelihood of data given the Voronoi cells Vj and distributional
prototypes ψj .

4 Bayesian approach

We are not actually interested in finding distributional prototypes - they are
nuisance parameters, so we marginalise them out. Also instead of using log-
likelihood we calculate the log-MAP by introducing the prior

p({Vj} , {ψj}) =
K∏
j=1

p(ψj) =
K∏
j=1

N∏
i=1

ψj(i)si−1.

In other words, we set improper prior to the Voronoi cells {Vj} and Dirichlet
prior to distributional prototypes {ψj}. Let us now set rji to be the number of
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data samples of class i in cluster j. Let also Rj =
∑N

i=1 rji to be the number of
samples in cluster j. Set also S =

∑N
i=1 si. Using these notations the log-MAP

is equal to

log p({Vj} | D) = log
∫
{ψj}

p({Vj} , {ψj} | D)

= log
∫
{ψj}

p(D | {Vj} , {ψj})p({Vj} , {ψj})

= log
∫
{ψj}

K∏
j=1

N∏
i=1

ψj(i)si+rji−1

=
K∑
j=1

N∑
i=1

log Γ(si + rji)−
K∑
j=1

log Γ(S +Rj).

(5)

This is the function that is minimised during the discriminative clustering. Note
that this cost function should be used when we have finite data. The cost
function given in Equation 3 should be used when we have infinite or very large
data set.

5 Connection to the contingency tables

Good [1] represented a Bayesian test for checking whether the contingency table.
The idea is to use the Bayes factor

P (D | H)
P (D | H̄) ,

where H̄ is hypothesis such that the variables in the contingency table are
independent.

Form a contingency table such that the first variable are the classes and the
second are the clusters. The entries of this table are equal to rji for class i and
cluster j (See notation in the previous section). If we use Dirichlet priors for
the entries rji, then the Bayes factor is equal to

P (D | H)
P (D | H̄) =

K∏
j=1

N∏
i=1

Γ(si + rji)
Γ(S +Rj)

× const.

This is virtually the same formula as in Equation 5. Thus discriminative clus-
tering tries to maximise the dependency between the clusters and auxiliary data
under the constraints.

6 Inferring algorithms

There is no to our knowledge easy way to infer the codebook for hard clus-
tering. Thus we introduce soft clusters. Let yjx be the membership func-
tion of cluster j such that 0 ≤ yj(x) < 1 and

∑K
j=1 yj(x) = 1. For example,

yj(x) = Z(x) exp
(‖x−mj‖ /σ2

)
, where Z(x) is the normalisation constant. In

this case we search optimal mj .
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Let us now introduce an online inferring algorithm for large data set. The
function to be minimised is given in Equation 3. To ease the notation set γj
such that logψj = γj − log

∑N
i=1 exp (γj(i)). Let x(t) and c(t) be the data

samples at step t. Draw two clusters k and l according to the distribution
y(x(t)) = [y1(x(t)), y2(x(t)), . . . , yN (x(t))]. Update the prototypes ml and ψl
(that is γl)

ml ⇐ ml − α(t) [x(t)−ml] log
ψk(c(t))
ψl(c(t))

γl(i) ⇐ γl(i)− α(t) [ψl(i)− δil] ,

where δil is Kronecker delta and i ranges over {1, . . . , N}. α(t) is the learning
schedule and it is chosen traditionally.

Let us now look at the finite data set. We use again soft clustering. In this case
the ’number’ of data points of class i in cluster j is equal to rji =

∑
c(x)=i yj(x).

Also set Rj =
∑
x yj(x). The function to be minimised is equal to

log p({Vj} | D) =
N∑
i=1

K∑
j=1

log Γ(si +
∑
c(x)=i

yj(x)) −
K∑
j=1

log Γ(S +
∑
x

yj(x)).

If the membership functions are chosen wisely e.g.,

yj(x) = Z(x) exp
(‖x−mj‖ /σ2

)
,

then we can solve the gradient of the cost function and apply some known
gradient descent method.

7 Soft clusters vs. Information Bottleneck

The membership functions yj(x) can be considered as a random variable v =
[v1, v2, . . . , vN ] in the sense that p(vj | x) = yj(x). The cost function for soft
clusters is equal to

EKL =
K∑
j=1

∫
p(vj | x)DKL(p(c | x), ψj)p(x)dx. (6)

Given some data point x, we assume that p(v | x) and p(c | x) are independent.
Thus, p(v, c | x) = p(v | x)p(c | x).

It is a known fact that at the minimum of the cost function in Eq. 6 the distri-
butional prototypes ψj are equal to

ψj(i) = p(ci | vj) = 1
p(vj)

∫
x

p(vj , ci | x)p(x) = 1
p(vj)

∫
x

yj(x)p(ci | x)p(x).

4



Applying this fact to Eq. 6 lead us to equation

EKL =
K∑
j=1

∫
p(vj | x)DKL(p(c | x), ψj)p(x)dx

=
K∑
j=1

N∑
i=1

∫
p(vj | x)p(ci | x) log

(
p(ci | x)
p(vj | ci)

)
p(x)dx

= −
K∑
j=1

N∑
i=1

∫
p(vj , ci | x) log (p(vj | ci)) p(x)dx + const1

= −
K∑
j=1

N∑
i=1

∫
p(vj , ci | x) log

(
p(vj , ci)
p(vi)

)
p(x)dx + const1

= −
K∑
j=1

N∑
i=1

∫
p(vj , ci | x) log

(
p(vj , ci)
p(cj)p(vi)

)
p(x)dx + const2

= −
K∑
j=1

N∑
i=1

p(vj , ci) log
(
p(vj , ci)
p(cj)p(vi)

)
+ const2

= −I(c, v) + const2,
where I(c, v) is the mutual information between random variables c and v and
const1 and const2 are expressions independent of v. Thus, in our problem we
are maximising the mutual information between the auxiliary data and the
membership functions.

In information bottleneck [4], the function to be minimised is I(D, v)−βI(c, v),
where D is primary data, v are the soft clusters (membership functions) and c
is the auxiliary data. The cost is almost the same as in our case except that
there is a term I(D, v) whose purpose is to regularise the solution: Otherwise we
could simply optimise this function by selecting p(vj , ci) = δjip(ci). This would
imply that I(D, v) = I(D, c). This value is assumed to be high. In discrimina-
tive clustering the regularisation is handled by parametrising the membership
functions and therefore there is no need for any regularisation term.

The major difference between these two approaches is that the primary data in
discriminative clustering is real valued and discrete in the information bottle-
neck.
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