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1 Background

We will begin this summary article by a brief review of Gibbs sampling and a
conjugate-exponential model which is suitable for the data.

1.1 Gibbs Sampling

Sampling from (multi-dimensional) joint probability distribution is often very
difficult. An easier way to obtain samples is to construct a Markov chain as
follows:

1. Select random initial values for parameters Θ = (θ1, . . . θr).

2. Sample θ
(m)
1 from conditional pdf p(θ1|X, θ

(m−1)
2 , . . . θ

(m−1)
r ).

3. Sample θ
(m)
2 from conditional pdf p(θ2|X, θ

(m)
1 , . . . θ

(m−1)
r ).

4. repeat from (2).

The chain has a stationary distribution p(θ1, . . . θr|X).
Usually the initial guess is far from the area where the posterior mass is

concentrated. Therefore the sampling procedure is run for several thousands
of iterations (so called burn-in stage) in order to drive the chain to the correct
area. The length of the burn-in stage naturally depends on the complexity of the
model. Due to the Markov chain property of the sampling method, consecutive
samples are correlated. Therefore samples from the chain are taken at some
constant interval (i.e. every cth sample). The method is known as thinning.

The benefit of Gibbs sampling (as well as other Markov Chain Monte Carlo
methods) is that we can define very complex models and still do inference by
using the samples from the model posterior. The difficult part is to evaluate
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when the sampling chain has reached the area of the posterior mass, and when
the correlations between samples comes from the true distribution instead of
the Markov Chain property (what is the minimal value of c).

1.2 Probability densities concerned

In population genetics, the data consist of a matrix of categorical values; the
types of genes the individuals have at certain loci. For modeling this kind of
data, a suitable distribution within the exponential family is the multinomial,

p(n|Θ) =

(

N

n1 n2 . . . nK

) K
∏

k=1

θnk

k ; N =
∑

k

nk, (1)

with a conjugate Dirichlet prior,

D(α) = p(Θ|α) =
Γ(α0)

∏K
k=1 Γ(αk)

K
∏

k=1

θαk−1
k ; α0 =

∑

k

αk. (2)

The Dirichlet distribution gives preference for Θ = (0 . . . 0 1 0 . . .), where each
k is equally likely, for values of α → 0. When αk = 1, we get a noninformative

prior, uniform distribution. Increasing the value of α places more weight (com-
pared to likelihood) on the prior, introducing more pseudo data to the model.
The hyperparameter values αk are usually equal. This way we do not prefer
any particular k, which is why the prior is then said to be symmetric.

By definition[4] the posterior of a conjugate model is of the same functional
form as prior.

2 Data

In population genetics the design matrix X consists of alleles1 of N (diploid)

individuals (i) in L loci2: (x
(i,1)
l , x

(i,2)
l ). It is generally assumed that alleles x

(i,a)
l

in certain loci are independent (in population genetics, Hardy-Weinberg equi-
librium). Another assumption is that the measured loci are far from each other
in the genome and can be considered independently inherited (complete linkage
equilibrium). In modeling this means that alleles in loci are independent of each
other. In more advanced models (discussed in Section 5) these assumptions are
relaxed somewhat.

Possible inferences from the data:

• What is(are) the population(s) of origin of a sample of individuals?

• Evolutionary relationships of populations?

• DNA fingerprinting: what is the probability of a false match?

1Allele= any one of a number of alternative forms of the same gene occupying a given
locus.

2Locus, loci(pl.) = A certain position in a chromosome, occupied by any of the alleles of
the gene.
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3 Models

3.1 Pros of generative models

Different clustering methods can be roughly divided into two categories: distance-
based methods and model-based methods.

A distance-based clustering method begins by computing a pairwise distance
matrix from the data. After obtaining the distance matrix, the data may be
clustered for example by forming a neighbor-joining tree. However, the clus-
tering results are arbitrary, depending on the chosen metric. Often only visual
evaluation of goodness of clustering can be made.

A generative model on the other hand describes the process which created
the data. Therefore, differences in the distribution of data can be measured in
terms of the differences in the parameter values that produced the corresponding
distributions. The model therefore provides the correct metric for measuring
distances, assuming of course that we have the correct model.

The use of generative models makes it possible to apply the Bayesian frame-
work. This enables us to incorporate useful expert knowledge into the model
via priors, estimate the uncertainties within the model, and use (somewhat)
objective criteria for selecting the optimal complexity of our model.

3.2 Model without admixture

In a simple model, the genotype (x
(i,1)
l , x

(i,2)
l ) of each individual (i) originates

from one of K populations (model setup shown in Fig. 1).

0

0
1

Z

Individuals

Population 3

Population 2

Population 1

P

X
Alleles

Data: Genotypes of the sampled individuals

Figure 1: Model without admixture. The X matrix consists of individuals
(rows) genotyped at L loci (columns). Each individual is originated from one
population, indicated by Z. Each population is described by multinomial dis-
tributions at L loci. The parameters of the distributions are collected in matrix
P .
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3.2.1 Model description

Model 1 - description

• p(Z, P |X) ∝ p(X |P, Z)p(P )p(Z)

• p(z(i) = k) = 1/K; where k = 1 . . .K.

• p(pkl·) ∼ D(λ1, . . . λJl
) ; where l = 1 . . . L, and

Jl is the number of distinct alleles in locus l.

• p(x
(i,a)
l = j|P, Z) = p(pz(i)lj); j = 1 . . . Jl

In the basic version we have a uniform prior: λ1 = λ2 = . . . = λJl
= 1.

3.2.2 Sampling

Model 1 - Gibbs sampling

1. Sample P (m) from p(P |X, Z(m−1)):

• p
(m)
kl· ∼ D(λ1 + nkl1, . . . , λJl

+ nklJl
), where

nklj = #
{

(i, a) : x
(i,a)
l = j and z(i) = k

}

2. Simulate z(i) from:
p(z(i) = k|X, P ) = p(x(i)|P,z(i)=k)

∑

k′ p(x(i)|P,z(i)=k′)
,

where p(x(i)|P, z(i) = k) =
∏L

l=1 pklx(i,1)pklx(i,2)

An equal prior p(z(i) = k) = 1/K is assumed.

3.3 Model with admixture

In a more advanced model, the genotype of each individual is a mixture of
populations. The model performs a probabilistic soft clustering of individuals
(i) into K clusters, and defines also the population of origin of each locus l of
individuals. The model setup is shown in Fig. 2.

3.3.1 Model description

Model 2 - description

• p(Z, P, Q|X) ∝ p(X |P, Z, Q)p(Z|P, Q)p(P )p(Q).

• p(x
(i,a)
l = j|Z, P, Q) = p(p

z
(i,a)
l

lj
).

• p(z
(i,a)
l = k|P, Q) = q

(i)
k .

• p(pkl·) ∼ D(λ1, . . . λJl
); λ1 = λ2 = . . . = λJl

= 1.

• p(q(i)) ∼ D(α, . . . , α); α ∼ Unif [0, 10].
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Figure 2: Model with admixture. The X matrix consists of individuals (rows)
genotyped at L loci (columns). Each individual is originated from the popula-
tions with the proportions indicated by Q. The population of origin for each loci
is sampled from a multinomial distribution with parameter values Q. As in the
simpler model, each population is again described by multinomial distributions
at L loci. The parameters of the distributions are collected in matrix P .

3.3.2 Sampling

Model 2 - Gibbs sampling

1. Sample P (m): p(p
(m)
kl· |X, Z(m−1)) ∼ D(λ1 + nkl1, . . . , λJl

+ nklJl
),

where nklj = #
{

(i, a) : x
(i,a)
l = j and z

(i,a)
l = k

}

.

2. Sample Q(m): p(q(i)|X, Z(m−1)) ∼ D(α + m
(i)
1 , . . . , α + m

(i)
K ),

where m
(i)
k = #

{

(l, a) : z
(i,a)
l = k

}

3. Sample Z(m):

p(z
(i,a)
l = k|X, P (m), Q(m)) =

q
(i)
k

p(x
(i,a)
l

|P,z
(i,a)
l

=k)
∑

k′ q
(i)

k′
p(x

(i,a)
l

|P,z
(i,a)
l

=k′)
,

where p(x
(i,a)
l |P, z

(i,a)
l = k) = p

klx
(i,a)
l

.

4. Simulate proposal α′ from N (α, σ2
α). Reject if α′ ≤ 0; otherwise accept

with the appropriate Metropolis-Hastings probability.

3.4 Practical issues

Due to label switching, there are K! different modes in the posterior. However,
the authors argue that the MCMC methods often do not switch between modes,
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and therefore we obtain an estimate of a posterior mode. In clustering this is
exactly what we want.

The number of clusters K was selected using a model selection criterion
based on Deviance Information Criterion, DIC [7, 8]. The variant used in the
paper assumes that the posterior is Gaussian. The criterion seems to work well,
as it gives correct results with simulated data.

4 Applications to data

In [5] the model was first tested with simulated data. The simulations considered
three scenarios:

• A single random-mating population of size N

• Two random-mating populations of size 2N, split from a single ancestral
population. No migration.

• Admixture of populations. Two populations joined, samples collected af-
ter two generations of random mating.

The model selection criterion assigns highest probability to a model with the
correct amount of clusters, and the model succeeds in assigning individuals to
correct clusters. After validation, the model was applied to two real life data
sets, Taita thrush and humans from Africa and Europe (results not discussed
here). The first data set consists of 155 individuals of taita thrush (turdus hel-

lerii), sampled from four locations in southeast Kenya. Each individual was
genotyped at seven microsatellite loci. The estimated mean proportions of pop-
ulations of individuals is shown in Figure 3.

Figure 3: Each point shows the mean estimated ancestry (vector q(i)) for an
individual. Shown as distances from the corners. Individuals 1-4 appear to be
outliers (possible immigrants).
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Four of the samples showed considerable difference from the genotype of the
main population in the area (shown in Fig. 3). In order to estimate whether
they or their parents are immigrants from other populations, further refinements
with the model were carried out (discussed in Section 5.1).

5 Beyond Basic Model

Modifications to the basic model can be made by constructing more informa-
tive priors (hierarchical priors). In this section we will discuss three variants.
The first variant, introduced in [5], takes into account the geographic sampling
location of the individuals. The next two variants, introduced in [3], relax the
independence assumptions of the models.

5.1 Modelling geographic location

In a further refinement, the geographic sampling location g(i) ∈ [1 . . .Kg] of the
individuals is taken into account. For this means we may place a hierarchic
prior on population proportions:

q
(i)

g(i) = 1, q
(i)
k = 0; (k 6= g(i))

with probability 1 − ν, and

q
(i)

g(i) = 1 − 2−t, q
(i)
j = 2−t; q

(i)
k = 0; (k 6= g(i), j)

for each j 6= g(i)with probab. 2tν

(Kg−1)
∑

G
T=0 2T

, where t ∈ [0 . . .G], and G is the

number of generations. The value of ν is an informed guess (a small value).

5.2 Linked markers.

DNA is actually inherited in large chunks. Therefore nearby markers are usually
from the same parent. We may incorporate this to the model by constructing a
Markov Chain of the linked loci:

• p(z
(i)
1 = k|r, Q) = q

(i)
k

• p(z
(i)
l+1 = k′|z

(i)
l = k, r, Q) =

{

exp(−dlr) + (1 − exp(−dlr))q
(i)
k′ if k′ = k

(1 − exp(−dlr))q
(i)
k otherwise,

where dl is the (known) distance between markers, and r is the rate of mixing
(log r ∼ Unif).

Notice that the model has similarities to hidden Markov models (HMMs).
The z(i) (cf. Fig. 2) can be seen as the realization of the (hidden) state sequence
each for individual (i). The transition probabilities in the model are defined by

q
(i)
k , r and distances between loci, dl. The P matrix is a multinomial emission

distribution. The difference to HMMs is that the emission distribution is not
stationary, but varies along the state sequence. However, the probabilities of
each state can still be computed using the conventional forward-backward -
algorithm [6]. These probabilities can then be used to obtain samples of state
sequences.
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5.3 Correlated allele frequencies.

Allele frequencies in closely related populations are often similar. This may be
modelled by constructing a hierarchical prior:

• pAl· ∼ D(λ1, . . . , λJl
).

• pkl· ∼ D
(

pAl1
1−Fk

Fk
, . . . , pAlJl

1−Fk

Fk

)

.

Fk can be interpreted as effective size of population k during the time since
divergence from ancestral population. It has a prior ∼ Γ, truncated at 1. The
parameter Fk defines our distance from ancestor population A. For small Fk we
are close to ancestor population A, and have a strong prior, whereas the closer
to 1 the Fk gets, the further we are from A, and have a weaker prior strength.
The use of this kind of model enables phylogenetic inference.

6 Conclusions

The model introduced in [5, 3] is the same as Latent Dirichlet Allocation
(LDA) [1] and multinomial Principal Component Analysis (mPCA) [2]. The
difference is how the models are optimized. In [5] MCMC sampling was imple-
mented, instead of using variational approximations as in [1, 2]. As a benefit of
Gibbs sampling, the posterior estimate is more accurate than in mPCA, result-
ing in better performance.

The model is also extended in several ways, such as model order selection
(number of populations K) and introducing several informative priors. The
extensions are clearly motivated by the nature of the data. For example, the
data in population genetics usually consists of a smaller amount of clusters K
than applications of mPCA (such as text clustering), making model selection
computationally more feasible.
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