
T-122.102 Special Course in Information Science VI:

Co-occurence methods in analysis of discrete data

Kernels for Structured Data

Based on article: A Survey of Kernels for Structured Data

by Thomas Gärtner

Pasi Lehtimäki

Pasi.Lehtimaki@hut.fi

46478E

February 9, 2004

1

1 Introduction

Kernel methods have become popular in supervised learning tasks, but also in
unsupervised learning. The main ingredient of kernel methods is the use of a
separate feature space when solving the problem at hand. For example, a kernel
method for implementing a nonlinear classifier is typically obtained by mapping
the data from the input space into a feature space via a nonlinear mapping, and
solving the classification problem in the feature space. After the data is mapped
into the feature space, a simple classifier or function is fitted to the data. The
most attractive feature of kernel methods is that the fact that the mapping into
the feature space need not be stated explicitly. In addition, a global solution
for the optimization problem can be obtained.

1.1 The kernel trick

The most important issue in kernel methods is the fact that the mapping from
input space to the into the feature space need not be explicit. This can be seen
by selecting a mapping Φ from input space to feature space as:

Φ : (x1, x2) → (x2
1,
√

2x1x2, x
2
2).

It is straightforward to see that this corresponds to kernel K(x, x′) = 〈x, x′〉2:

K(x, x′) = 〈x, x′〉2 = (x1x
′
1 + x2x

′
2)

2

= (x1x
′
1)

2 + 2x1x2x
′
1x

′
2 + (x2x

′
2)

2

= 〈
(

x2
1,
√

2x1x2, x
2
2

)

,
(

x′2
1 ,

√
2x′

1x
′
2, x

′2
2

)

〉
= 〈Φ(x), Φ(x′)〉.

Therefore, the mapping Φ is not explicitly needed. Instead, one can evaluate
the value of the kernel function K(x, x′).

1.2 Valid and good kernels

Kernel K(x, x′) measures the similarity of x and x′. The requirement for a func-
tion K(x, x′) to be a valid kernel is that it must be positive definite. However,
there is always a valid kernel performing poorly at a problem, but also there
is always a kernel performing ideally. Three distinct characteristics for a good
kernel have been proposed: completeness, correctness and appropriateness.

Completeness refers to the extent to which the knowledge incorporated to
the kernel is sufficient for solving the problem at hand. Correctness refers to
the extent to which the underlying semantics of the problem are obeyed in the
kernel. Appropriateness refers to the extent to which the examples that are
close to each other in the class membership are also close to each other in the
feature space.

2

2 Model-driven kernels

There are various approaches for deriving a suitable kernel for the problem
at hand. Model-driven kernels are generated from the knowledge about the
semantics of the problem domain or estimated from data. Syntax-driven kernels
are derived from the semantics of the data and are described in the next section.

2.1 Kernels from generative models

Let us assume that we have a set of possible states si, i = 1, ..., N , and a state
transition matrix A of size N × N , where Aij captures the probability of the
system to switch from state si to sj . A generative model for the system is of the
form P (s|θ), where θ consists of the probabilities in the matrix A. Let Ux be
the gradient of the log-likelihood w.r.t the parameters of the generative model
P (x|θ) at x:

Ux = ∇θ log P (x|θ).
Now, a kernel that can be used to process sequences that are produced by a
generative model P (x|θ) is

K(x, x′) = UT
x Ux.

Often, the kernel is equipped with the Fisher information matrix I over the
distribution P (x|θ):

I = E{UxUT
x },

yielding into so-called Fisher kernel:

K(x, x′) = UT
x I−1Ux.

2.2 Kernel from transformations

The so-called diffusion kernel is obtained through a transformation using matrix
exponentiation. It can be presented as

K = eβH = lim
n→∞

(

1 +
βH

n

)n

,

where β is so-called bandwidth parameter and H is a generator. Differentiating
with respect to β leads into differential equation

d

dβ
K(β) = HK(β).

Selecting initial conditions K(0) = I leads into interpretation that K(β) is the
product of continuous process, expressed by H , gradually transforming it from
identity matrix K(0) to a kernel with stronger and stronger off-diagonal effects
as β increases. Thus, choosing H to express the local structure of input data
will result in the global structure of the input data naturally emerging in K.

3

For example, an undirected graph G is defined by a vertex set V and an
edge set E, where {υi, υj} ∈ E if there is an edge between vertices υi and υj. A
suitable generator is

Hij =

1 ,{υi, υj} ∈ E

−di ,i = j

0 ,otherwise

where di is the number of edges originating from vertex υi.

3 Syntax-driven kernels

3.1 Convolution kernels

The semantics of the composite objects can often be captured by a relation R

between the object and its parts. Let ~x = x1, x2, . . . , xd denote the parts of
object x, and R be a relation on the set X1 ×X2× . . .×Xd ×X . R(~x, x) is true
iff x1, x2, . . . , xd are the parts of x. Let R−1(x) = {~x : R(~x, x)} be the set of
parts of x. Let us assume, that kernel Kd(xd, x′

d) measures the similarity of part
d of the objects x and x′. Then, a convolution kernel suitable for measuring the
similarity of composite objects x and x′ is:

K(x, x′) =
∑

~x∈R−1(x),~x′∈R−1(x′)

D
∏

d=1

Kd(xd, x′
d)

3.2 String kernels

The development of methods to process character strings is of high importance
in many areas. Using kernel methods, the similarity of two strings s1 and s2 (and
thus, the value of the kernel function K(s1, s2)) can be based on the number
of common subsequences and by penalizing the occurences of g aps within the
subsequences.

For example, consider two strings s1=”cat” and s2=”cart”. The common
subsequences occurring in both sequences are “c”, “a”, “t”, “ca”, “at”,“ct”, “cat”.
Now, the total length of occurences of these subsequences in s1 and s2 are (w.r.t
s1, w.r.t s2): “c”(1,1), “a”(1,1), “t”(1,1), “ca”(2,2), “at”(2,3), “ct”(3,4), “cat”(3,4).

Now, using a decay factor λ, penalties corresponding to the subsequences
become “c”: λ1λ1, “a”:λ1λ1, “t”:λ1λ1, “ca”:λ2λ2, “at”:λ2λ3, “ct”:λ3λ4, “cat”:λ3λ4.
Now, the value of the kernel function between two strings s1 and s2 is the sum
of the penalties:

K(“cat”, “cart”) = 2λ7 + λ5 + λ4 + 3λ2

However, the computation of the value of this kind of kernels may be very
expensive.

4

3.3 Tree kernels

Let us assume, that the instances considered in the learning task are labeled
and ordered directed subtrees. Now, consider some enumeration of all possible
subtrees and let hi(T) be the number of occurences of ith subtree in tree T . In
order to measure the similarity of two trees T1 and T2, the value of the kernel

K(T1, T2) =
∑

i

hi(T1)hi(T2)

can be computed, giving an intuitive measure between the similarity of the
graphs T1 and T2.

3.4 Basic term kernels

The key idea is to use fixed type structures. In this context, three kind of types
are used: function types, product types and constructor types. Function types
are used to represent objects corresponding to sets and multisets. Product types
represent objects corresponding to tuples and constructors are used to represent
structural objects of arbitrary size, such as lists, trees etc.

Each type defines basic terms representing the instances of the types. Ab-

straction is used to build instances of function type, tupling is used to create
instances of product type and application corresponds to building objects of a
type constructor.

For example, basic term s represents the set {1, 2} and basic term t represents
the multiset with 42 occurences of A and 21 occurences of B:

s = λx.if x = 1 then > else if x = 2 then > else ⊥
t = λx.if x = A then 42 else if x = B then 21 else 0

For basic abstraction r, V (r u) denotes the value of r when applied to u. For
example, V (s 2) = > and V (t C) = 0. Support of an abstraction is the set of
terms u for which V (r u) differs from default value. For example, supp(s) =
{1, 2}. Now, if s and t are basic terms formed by abstraction, then a suitable
kernel to measure their similarity is:

K(s, t) =
∑

u∈supp(s),v∈supp(t)

K(V (s u), V (t v)) · K(u, v).

3.5 Graph kernels

A graph consist of a set of vertices, a set of edges between the vertices, a set of
labels for the vertices and a set of labels for the edges. Two graphs generating
a product graph are called factor graphs. The vertex set of the product graph
is Cartesian product of the vertex sets of the factor graphs. The product graph
has a vertex iff the labels of the corresponding vertices in the factor graphs are
the same. There is an edge between two vertices in the product graph if there

5

is an edge between the corresponding vertices in both factor graphs and both
edges have the same label.

Let’s denote the edge set of the product graph by E×. Let’s denote an
enumeration of vertex set by V = {υi}, i = 1, ..., N . The elemenents of the
so-called adjacency matrix E× are defined by [E×]ij = 1 ⇐⇒ (υi, υj) ∈ E×,
and [E×]ij = 0 ⇐⇒ (υi, υj) 6∈ E×. With a sequence of weights λ0, λ1, . . . ,

(λi ≥ 0, ∀i), the value of the product kernel between two graphs G1 and G2 is:

K×(G1, G2) =

|V×|
∑

i,j=1

[

∞
∑

n=0

λnEn
×

]

ij

,

where
[

En
×

]

ij
is the number of walks of length n from υi to υj .

4 Conclusions

Kernel methods, especially for structured data is a promising research area.
For discrete data, the problem reduces in selecting a suitable kernel. In the
literature, a lot of kernels have been proposed. The selection of a suitable
kernel for the problem at hand is not a trivial task. A lot of applications for
processing sequences describing DNA, protein, gene, speech, text, molecule, etc.
are presented.

6

