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1 Introduction

A fundamental problem in formalizing our intuitive ideas about information is
to provide a quantitative notion of “meaningful” or “relevant” information.

It is argued in this paper that information theory, in particular lossy source
compression, provides a natural quantitative approach to the question of “rel-
evant information.” Specifically, the authors formulate a variational principle
for the extraction or efficient representation of relevant information.

The standard analysis of lossy source compression is “rate distortion theory,”
which provides a tradeoff between the rate, or signal representation size, and the
average distortion of the reconstructed signal. Rate distortion theory determines
the level of inevitable expected distortion, D, given the desired information rate,
R, in terms of the rate distortion function R(D). The main problem with rate
distortion theory is in the need to specify the distortion function first, which in
turn determines the relevant features of the signal. Those features, however, are
often not explicitly known and an arbitrary choice of the distortion function is
in fact an arbitrary feature selection.

In this paper the authors formalized this intuitive idea using an information
theoretic approach which extends elements of rate distortion theory. They also
derived self consistent equations and an iterative algorithm for finding represen-
tations of the signal that capture its relevant structure, and prove convergence
of this algorithm.

2 Review of rate distoration theorem

2.1 Mutual informatino as quantization rate

Let X denote the signal (message) space with a fixed probability measure p(x),
and let X̃ denote its quantized codebook or compressed representation. For
each value x ∈ X we seek a possibly stochastic mapping to a representative, or
codeword in a codebook, x̃ ∈ X̃, characterized by a conditional p.d.f. p(x̃|x).
The mapping p(x̃|x) induces a soft partitioning of X in which each block is
associated with the codebook elements x ∈ X, with probability p(x̃|x).
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The first factor that determines the quality of a quantization is the rate,
or the average number of bits per message needed to specify an element in the
codebook without confusion. This number per element of X is bounded from
below by the mutual information

I(X; X̃) =
∑
x∈X

∑
x̃∈X̃

p(x, x̃)log

[
p(x̃|x)
p(x̃)

]

since the average cardinality of the partitioning of X is given by the ratio of the
volume of X to that of the mean partition, 2H(X)/2H(X|X̃) = 2I(X;X̃), via the
standard asymptotic arguments. Notice that this quantity is different from the
entropy of the codebook, H(X̃), and this entropy is normally not the target to
be minimized.

2.2 Problem to sovle in rate distortion theory

The partitioning of X induced by the mapping p(x̃|x), has an expected distortion〈
d(x, x̃)

〉
p(x,x̃)

=
∑
x∈X

∑
x̃∈X̃

p(x, x̃)d(x, x̃)

There is a monotonic tradeoff between the rate of the quantization and the
expected distortion: the larger the rate, the smaller is the achievable distortion.

The rate distortion theorem of Shannon and Kolmogorov characterizes this
tradeoff through the rate distortion function, R(D), defined as the minimal
achievable rate under a given constraint on the expected distortion:

R(D) ≡ min
{p(x̃|x):

〈
d(x,x̃)

〉
≤D}

I(X; X̃)

or the variational form by attaching the Lagrange multiplier, β

F
[
p(x̃|x)

]
= I(X; X̃) + β

〈
d(x, x̃)

〉
p(x,x̃)

2.3 Main result of Blahut-Arimoto algorithm

The optimal mapping in the rate distoration problem can be obtained by the
BA algorithm in an iterative manner.

• Self consistent equations for iterations:{
pt+1(x̃) =

∑
x p(x)pt(x̃|x)

pt(x̃|x) = pt(x̃)
Zt(x,β)exp(−βd(x, x̃))
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3 Problem to solve in this paper

The problem of relevant quantization has to be addressed directly, by preserv-
ing the relevant information about another variable. The relevance variable,
denoted here by Y , must not be independent from the original signal X, namely
they have positive mutual information I(X;Y ). It is assumed here that we have
access to the joint distribution p(x, y), which is part of the setup of the problem.

The goal is to do quantization and capture as much of the information about
Y as possible. The amount of information about Y in X̃ is given by I(X̃;Y ) ≤
I(X;Y )

The quantization can be regarded as some kind of lossy compression, which
cannot convey more information than the original data. As with rate and distor-
tion, there is a tradeoff between compressing the representation and preserving
meaningful information, and there is no single right solution for the tradeoff.
The assignment to look for in this paper is the one that keeps a fixed amount
of meaningful information about the relevant signal Y while minimizing the
number of bits from the original signal X (maximizing the compression).1 In
effect the information that X provides about Y is passed through a “bottleneck”
formed by the compact summaries in X̃.

The optimal assignment by minimizing the functional

L[p(x̃|x] = I(X̃;X)− βI(X̃;Y )

where β is the Lagrange multiplier attached to the constrained meaningful in-
formation. information, while maintaining the normalization of the mapping
p(x̃|x) for every x. At β = 0 our quantization is the most sketchy possible–
everything is assigned to a single point–while as β →∞ we are pushed toward
arbitrarily detailed quantization. By varying the (only) parameter β one can
explore the tradeoff between the preserved meaningful information and com-
pression at various resolutions.

4 Main result of this paper

• Funtional to be minimized:

F
[
p(x̃|x); p(x̃); p(y|x̃)

]
= I(X̃;X) + β

〈
DKL

[
p(y|x)|p(y|x̃)

]〉
p(x,x̃)

• Self consistent equations for iterations:
pt(x̃|x) = pt(x̃)

Zt(x,β)exp(−βd(x, x̃))
pt+1(x̃) =

∑
x p(x)pt(x̃|x)

pt+1(y|x̃) =
∑

y p(y|x)pt(x|x̃)

1It is completely equivalent to maximize the meaningful information for a fixed compression
of the original variable.
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• The structure of the solutions

For every value of the Lagrange multiplier β there are corresponding values
of the mutual information IX(X; X̃), and IY (X̃;Y ) for every choice of the
cardinality of X̃. The variational principle implies that

δIY (X̃;Y )
δIX(X; X̃)

= β−1 > 0

which suggests a deterministic annealing approach. By increasing the
value of β one can move along convex curves in the “information plane”
(IX , IY ). These curves, analogous to the rate-distortion curves, exists for
every choice of the cardinality of X̃ . The solutions of the self-consistent
equations thus correspond to a family of such annealing curves, all start
from the (trivial) point (0,0) in the information plane with infinite slope
and are parameterized by the value of β. Interestingly, every two curves
in this family separate (bifurcate) at some finite (critical) β, through a
second-order phase transition. These transitions form an hierarchy of
relevant quantizations for different cardinalities of X̃.
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