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Motivation

Why discretization?

e Numerous methods are only applicable to discrete data, e.g.

information bottleneck

e Sometimes the data is known to be discrete (e.g. binary on/off),

though we only have real-valued data due to noise

e Computational reasons, discretization as preprocessing



“Traditional” methods
Any (hard) clustering algorithm can be used for discretization, but
they are not optimal

|dea: minimize the loss of information that the given variable may
contain about other variables

Class-based methods: find discretization so that the entropy of class
distributions is preserved maximally within the discretization levels

A similar approach to unlabeled data by Monti and Cooper

Number of possible discretizations is exponential in the number of
samples — greedy methods



Proposed approach

Here a method that optimizes the discretization during the model

learning is introduced

Applied to graphical models, which can be relatively effectively
computed for discrete data

The task is to discretize the data and learn the structure of the
graphical model (dependencies between variables) at the same time

Some algorithms proposed earlier for the same task, but they are

computationally too heavy

In practice: maximize the likelihood of data with respect to the
discretization and the model structure



Notation

Denote by A a univariate discretization policy, that is, a sequence of

ri, — 1 threshold values A;

Discretization by mapping fa(y) =7 if Aj_1 <y <\

N samples and n variables
1th sample of kth variable is denoted by y
discrete value by a:,gi)

m 1s used to denote the model structure

(%)
k

and the corresponding



Sequential approach

Likelihood computed sequentially, given the discretization

N

p(D|A,m) = [ p(y@ DD, A, m)

i=1

The predictive distribution factors
py DUV A m) = p(y |z, A)p(z' DUV A, m)

The second part is “easy” with discrete variables, first needs to be
studied

If m and x capture all dependencies, the variables y are independent
given z, p(y o™, A) = [T, p(yy” 29, Ar)



Finest grid
Consider the finest possible discretization (£2) of the data set with
exactly one data point in each discretization level

This is called the finest grid implied by the data, and the thresholds

can be freely selected between the data points

“Restrict” the discretization policy A so that the thresholds are
picked from the thresholds of (2

Denote by z the discretized value according to (2 and by x the
discretized value according to A

pys? 2D, Ay, Q1) = plyl? |27, ) (27 [2D, Ay, Q)



Conceptual summary

The likelihood of the observed data can be factorized as

p(Y|D, A,m) = p(X|D, A, m)p(Z| X, A, Q)p(Y |Z, Q)

The first term is familiar for discrete data

Z is assumed to be evenly distributed given X

Any distribution is allowed for the third term
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Discretization




Semi-predictive discretization 1/2

Optimize the likelihood

p(D|A, m, Q) = DAm< ><HH (5?27, ))

Semi-predictive because the finest grid (£2) is computed using the

whole data set, not just the previous samples

First term: likelihood of the graph m given the discrete values —
basic stuff

Second term: Can be written as the reciprocal of the maximum
likelihood of an empty graph (times constant), p(Dy |0, m.) ™}

Third term: Independent of A and m and thus irrelevant



Semi-predictive Discretization 2 /2

The final cost function
L(A,m) = log p(Dy|m)—log p(Dy|0,m.) = log p(Da|m)+N >~ H(p(Xy))
k=1

Both likelihoods increase with diminishing number of discretization

levels — entropy penalizes for coarse discretization

Depends only on counts of data, and is independent of the metric of
the continuous space

If all variables are independent, the discretization is chosen to
optimize predictions — one level is optimal



Predictive Discretization

Also () is formed based only on the previous samples

Leads to cost
L(A,m) = logp(Da|m) —log G(D, A) ,

where

n 1
¢80 = sy

k=1 xg

The difference between methods is relevant

Predictive discretization favors slightly more discretization levels



Experiments

Find the structure of pheromone response pathway in yeast

Method is invariant to continuously differentiable, monotonic
transformations, so no preprocessing of data is needed

A greedy algorithm used for simplicity

1. Given discretized data, optimize m locally

2. Given m, optimize A iteratively for each variable at a time

Heuristic to avoid local maxima: optimize m and A only slightly at

each step

The resulting network has clearly different structure than what has
been found in earlier studies, and it seems biologically plausible



Conclusions
e A method for optimizing discretization while learning Bayes network
structure was introduced

e The discretization seems to be important for the structure

determination

e Computationally difficult task, here using the finest grid makes
computations possible



