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Motivation

Why discretization?

• Numerous methods are only applicable to discrete data, e.g.

information bottleneck

• Sometimes the data is known to be discrete (e.g. binary on/off),

though we only have real-valued data due to noise

• Computational reasons, discretization as preprocessing



“Traditional” methods

• Any (hard) clustering algorithm can be used for discretization, but

they are not optimal

• Idea: minimize the loss of information that the given variable may

contain about other variables

• Class-based methods: find discretization so that the entropy of class

distributions is preserved maximally within the discretization levels

• A similar approach to unlabeled data by Monti and Cooper

• Number of possible discretizations is exponential in the number of

samples → greedy methods



Proposed approach

• Here a method that optimizes the discretization during the model

learning is introduced

• Applied to graphical models, which can be relatively effectively

computed for discrete data

• The task is to discretize the data and learn the structure of the

graphical model (dependencies between variables) at the same time

• Some algorithms proposed earlier for the same task, but they are

computationally too heavy

• In practice: maximize the likelihood of data with respect to the

discretization and the model structure



Notation

• Denote by Λ a univariate discretization policy, that is, a sequence of

rk − 1 threshold values λj

• Discretization by mapping fΛ(y) = j if λj−1 ≤ y < λj

• N samples and n variables

• ith sample of kth variable is denoted by y
(i)
k and the corresponding

discrete value by x
(i)
k

• m is used to denote the model structure



Sequential approach

• Likelihood computed sequentially, given the discretization

p(D|Λ, m) =

N
∏

i=1

p(y(i)|D(i−1), Λ, m)

• The predictive distribution factors

p(y(i)|D(i−1), Λ, m) = p(y(i)|x(i), Λ)p(x(i)|D(i−1), Λ, m)

• The second part is “easy” with discrete variables, first needs to be

studied

• If m and x capture all dependencies, the variables y are independent

given x, p(y(i)|x(i), Λ) =
∏n

k=1 p(y
(i)
k |x(i), Λk)



Finest grid

• Consider the finest possible discretization (Ω) of the data set with

exactly one data point in each discretization level

• This is called the finest grid implied by the data, and the thresholds

can be freely selected between the data points

• “Restrict” the discretization policy Λ so that the thresholds are

picked from the thresholds of Ω

• Denote by z the discretized value according to Ω and by x the

discretized value according to Λ

p(y
(i)
k |x(i), Λk, Ωk) = p(y

(i)
k |z

(i)
k , Ωk)p(z

(i)
k |x(i), Λk, Ωk)



Conceptual summary

• The likelihood of the observed data can be factorized as

p(Y |D, Λ, m) = p(X|D, Λ, m)p(Z|X, Λ, Ω)p(Y |Z,Ω)

• The first term is familiar for discrete data

• Z is assumed to be evenly distributed given X

p(z
(i)
k |x(i), Λk, Ωk) =

1

N(x
(i)
k )

• Any distribution is allowed for the third term
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Semi-predictive discretization 1/2

• Optimize the likelihood

p(D|Λ, m,Ω) = p(DΛ|m)

(

N
∏

i=1

n
∏

k=1

1

N(x
(i)
k )

) (

N
∏

i=1

n
∏

k=1

p(y
(i)
k |z

(i)
k , Ωk)

)

• Semi-predictive because the finest grid (Ω) is computed using the

whole data set, not just the previous samples

• First term: likelihood of the graph m given the discrete values —

basic stuff

• Second term: Can be written as the reciprocal of the maximum

likelihood of an empty graph (times constant), p(DΛ|θ̂, me)
−1

• Third term: Independent of Λ and m and thus irrelevant



Semi-predictive Discretization 2/2

• The final cost function

L(Λ, m) = log p(DΛ|m)−log p(DΛ|θ̂, me) = log p(DΛ|m)+N

n
∑

k=1

H(p̂(Xk))

• Both likelihoods increase with diminishing number of discretization

levels → entropy penalizes for coarse discretization

• Depends only on counts of data, and is independent of the metric of

the continuous space

• If all variables are independent, the discretization is chosen to

optimize predictions → one level is optimal



Predictive Discretization

• Also Ω is formed based only on the previous samples

• Leads to cost

L(Λ, m) = log p(DΛ|m) − log G(D, Λ) ,

where

G(D, Λ) =

n
∏

k=1

∏

xk

1

Γ(N(xk))

• The difference between methods is relevant

• Predictive discretization favors slightly more discretization levels



Experiments

• Find the structure of pheromone response pathway in yeast

• Method is invariant to continuously differentiable, monotonic

transformations, so no preprocessing of data is needed

• A greedy algorithm used for simplicity

1. Given discretized data, optimize m locally

2. Given m, optimize Λ iteratively for each variable at a time

• Heuristic to avoid local maxima: optimize m and Λ only slightly at

each step

• The resulting network has clearly different structure than what has

been found in earlier studies, and it seems biologically plausible



Conclusions

• A method for optimizing discretization while learning Bayes network

structure was introduced

• The discretization seems to be important for the structure

determination

• Computationally difficult task, here using the finest grid makes

computations possible


