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Problem setting

• Consider that data comes in pairs (x, c), where x is primary data
x ∈ RM and c is auxiliary data. In our case auxiliary data is discrete
classes c ∈ {1, . . . , N}.

• We want to cluster data such that we use the information available in
auxiliary data.

• This is different than dividing primary data into auxiliary data classes
since we have some constraints: For example, the number of clusters
may be different than the number of auxiliary data classes. Also primary
data should be compact in each cluster.
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Menu

• Some basic definitions.

• The first version of the discriminative clustering.

• Discriminative clustering for finite data (ML/MAP).

• Connection to contingency tables.

• Inferring algorithms.

• Soft clusters vs. Information Bottleneck.
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Learning Vector Quantization

• In theory, LVQ involves with the minimisation of the average distortion

E =
K∑

j=1

∫
Vj

D(x,mj)p(x)dx,

where K is the number of cluster, mj is a prototype of the cluster j,
D(x,mj) is a distortion function.

• Vj is a Voronoi cell defined x ∈ Vj, if D(x,mj) ≤ D(x,mk), for all k.
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Kullback-Leibler

• Let p(c | x) be the distribution of auxiliary data given the primary data
point.

• Define

DKL(p(c | x), ψ) =
N∑

j=1

p(c = j | x) log
(
p(c = j | x)

ψ(j)

)
,

where ψ is some distribution defined on the domain {1, . . . , N}.
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Discriminative Clustering

• Associate with each cluster an additional prototype ψj that represents
the conditional probabilities p(c | x) in each Voronoi cell Vj.

• Define the average distortion

EKL =
K∑

j=1

∫
Vj

DKL(p(c | x), ψj)p(x)dx.

• However, Voronoi cells are defined traditionally: x ∈ Vj, if ‖x−mj‖ ≤
‖x−mk‖, for all k.

• Thus, minimising the average distortion involves finding optimal primary
data prototypes mj and optimal conditional probabilities prototypes ψj.
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Finite data

• Assume now that we have a finite number of data samples. In this case
we do not know the probabilities p(x) and p(c | x).

• We replace
∫

Vj
· · · p(x)dx with

∑
x∈Vj

and set

p(c = i | x) =
{

1 i = c(x)
0 otherwise

• Thus EKL transforms into

EKL = −
K∑

j=1

∑
x∈Vj

logψj(c(x)).
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Maximum Likelihood

• The distortion −EKL can be expressed in form

L =
K∑

j=1

∑
x∈Vj

logψj(c(x)) = log
K∏

j=1

∏
x∈Vj

ψj(c(x))

= log p(D | {ψj} , {Vj}),

where D is data (primary and auxiliary), {ψj} is the family of the
prototypes and {Vj} is the family of the Voronoi cells.

• In other words, L is the log-likelihood of data D given the prototypes
{ψi} and the Voronoi cells {Vj}.

• Minimising the average distortion for the finite data is equal to maximising
the likelihood.
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Bayesian approach

• Instead of maximising the log-likelihood log p(D | {ψj} , {Vj}) we
can marginalise the prototypes out and maximise the log-posterior
log p({Vj} | D).

• We set the prior p({Vj} , {ψj}) ∝
∏K

j=1 p(ψj) and

p(ψj) ∝
N∏

i=1

ψj(i)si−1.

8



Bayesian approach cont’d

• Let rji be the number of data samples of class i in cluster j. Let

Rj =
∑N

i=1 rji be the number of samples in cluster j. Set also

S =
∑N

i=1 si.

• The log-posterior is equal to

log p({Vj} | D) =
K∑

j=1

N∑
i=1

log Γ(si + rji)−
K∑

j=1

log Γ(S +Rj).

• This is the function that should be maximised during the discriminative
clustering.
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Contingency tables

• Form a contingency table such that the first margin is the auxiliary data
classes and the second is the clusters. The element of the table rji is
the number of data samples of class i in cluster j.

• Bayesian test for dependency in the contingency is a Bayes factor

p({rij} | H̄)
p({rij} | H)

,

where H is the independence hypothesis between the clusters and the
classes.

• This factor result large values if there is a strong dependence between
the clusters and the classes.
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Connection to the contingency tables

• The Bayes factor (under some specific priors) is equal to

p({rij} | H̄)
p({rij} | H)

∝
∏K

i=1

∏N
j=1 Γ(rji + si)∏N

j=1 Γ(Rj + S)
= p({Vj} | D).

• Thus, discriminative clustering maximises dependency in the contingency
table under the constraints.
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Inferring algorithms

• We represent two algorithms. The first algorithm is of online type and
assumes that we have infinite (or very large) data set and minimises the
original cost function EKL. The second algorithm assumes that we have
finite number of data samples and maximises the log-posteriori.

• It is hard to give inferring algorithms for hard clusters, so we use soft
clustering.

• Each cluster has a membership function 1 ≤ yj(x) ≤ 0 such that∑K
j=1 yj(x) = 1.

• For example, yj(x) = Z(x) exp
(
‖x−mj‖ /σ2

)
, where Z(x) is a

normalisation constant.
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Online algorithm

• Let (x(t), c(t)) be the data sample at step t.

• Draw independently two clusters k and l according to distribution
yj(x(t)).

• Reparametrise the distributional prototypes
logψj = γj − log

∑N
i=1 exp (γj(i)).

• Update the prototypes ml and ψl (that is γl)

ml ⇐ ml − α(t) [x(t)−ml] log
ψk(c(t))
ψl(c(t))

γl(i) ⇐ γl(i)− α(t) [ψl(i)− δil] ,

where δil is a Kronecker delta.
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Offline algorithm

• The smoothed version of the number of samples rij of class i in cluster
j is rji =

∑
c(x)=i yj(x).

• Also, Rj =
∑

x yj(x).
• The function to be maximised is now

log p({Vj} | D) =
N∑

i=1

K∑
j=1

log Γ(si+
∑

c(x)=i

yj(x))−
K∑

j=1

log Γ(S+
∑

x

yj(x)).

• If the membership functions yj are chosen wisely, then we can calculate
the gradient of log p({Vj} | D) respect to the prototypes mj and
maximise the function by using our favourite gradient algorithm.
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Soft clusters vs. Information Bottleneck

• The membership functions [y1(x), y2(x), . . . , yK(x)] can be interpreted
as random variable p(V | x), where V = [v1, v2, . . . , vK] and p(vj | x) =
yj(x).

• At minimum of EKL the prototypes are equal to ψj(i) = p(ci | vj).

EKL =
K∑

j=1

∫
p(vj | x)DKL(p(c | x), ψj)p(x)dx

=
K∑

j=1

N∑
i=1

∫
p(vj | x)p(ci | x) log

(
p(ci | x)
p(ci | vj)

)
p(x)dx

= −
K∑

j=1

N∑
i=1

p(vj, ci) log
(
p(vj, ci)
p(vj)p(ci)

)
+ const.
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Soft clusters vs. Information Bottleneck cont’d

• Thus EKL = −I(C, V )+const, where I(C, V ) is the mutual information
of auxiliary data and cluster probabilities.

• In Information Bottleneck a codebook V is formed such that I(X,V ) is
maximised under the constraints I(V,C) < k.

• The functional to be minimised is I(X,V ) − βI(C, V ). This is almost
the same as the function in the discriminative clustering.

• The purpose of I(X,V ) is to regularise the solution. This is not needed
in the discriminative clustering since the solution is constrained by the
form and the number of the membership functions.

• Also X is multinomial in Information Bottleneck and continuous in the
discriminative clustering.
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Conclusions

• We derive discriminative clustering cost function by adding the Kullback-
Leibler divergence of auxiliary data into standard LVQ technique.

• For finite data we showed that this cost function is the same as the log-
likelihood. We extend this by marginalising the distributional prototypes
out and obtaining the MAP solution.

• We represent two different algorithms. The first is online and is meant
for large data sets and it uses the original formula. The second algorithm
uses the MAP solution by maximising the probability by using some
gradient algorithm.
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