Helsinki University of Technology

Topology Preservation - part I Self-organising maps

Dušan Sovilj

23.10.2007

Outline

- Distance vs Topology
- Topology-preserving methods
- Self-organising map in dimensionality reduction
 - embedding of data set
 - embedding of test set
 - example
 - summary

Distance vs Topology

- Distance
 - simple to understand
 - easy to compute
 - rigid in dimensionality reduction
- Topology
 - can fully describe manifolds
 - hard to represent with few points
 - without a good description of topology, dimensionality reduction is impossible

Topology-preserving methods

- Very ofted they use the discrete mapping model
 - the topology is then also discrete, called *lattice*
- Topology can be discretely represented with a graph
- Classified according to type of topology used in embedding space
 - predefined lattice
 - data-driven lattice

'Predefined lattice' methods

- Methods
 - self-organising map
 - generative topographic mapping
- Application very limited (few manifolds fit predefined shape)
- Good way for visualization of labeled data

SOM in DR

- Can be interpreted as non-linear & discrete PCA
 - fitting of hyperplane inside the data cloud
 - hyperplane is described with discrete points
 - fitting of a 'fishing net' around an object
- SOM uses a mix of vector quantization and topology preservation

Classic VQ & SOM's VQ

- Vector quantization in SOMs are mandatory
- Classic VQ doesn't take into account the relations between the prototypes/representatives
- SOM tries to 'preserve' the lattice in data space by moving prototypes in neighbouring groups

SOM definition

- Set *C* containing the prototypes in the data space for vector quantization. Prototypes are *D*-dimensional points **c**(*r*)
- Distance function $d_q(r, s)$ between the prototypes in the lattice
- *r* & *s* are indices of prototypes

Embedding of data points in SOM

- Lattice plays the role of embedding space
 - $d_g(r, s)$ cannot be any distance function
 - $d_g(r,s)$ is often defined as $d_g(g(r),g(s)), g(r),g(s) \in G \subset \mathbb{R}^P$ *P* is dimensionality of embedding space
- Prototypes have coordinates both in data and embedding space
 - coordinates in embedding space are known (predefined lattice)
 - coordinates in data space are unknown, and SOM has to find them
- Embedding of data points y(i)

x(i)=g(r) $r=\arg\min_{s}d(y(i),c(s))$

where *d* is Euclidean distance

Prototypes' coordinates

- Iteratively by going through all data points in **Y** (epochs)
- For every point y(i)
 - 1. Find closest prototype

 $r = \arg\min_{s} d(y(i), c(s))$

2. Update coordinates of all prototypes

 $c(s) \leftarrow c(s) + \alpha v_{\lambda}(r,s) (y(i) - c(s))$

 α learning rate, $0 \le \alpha \le 1$ decreases with epochs ν_{λ} neighbourhood function

Neighbourhood functions

• 'Bubble'

$$v_{\lambda}(\boldsymbol{r},\boldsymbol{s}) = \begin{cases} 0 & \text{if } \boldsymbol{d}_{g}(\boldsymbol{r},\boldsymbol{s}) > \lambda \\ 1 & \text{if } \boldsymbol{d}_{g}(\boldsymbol{r},\boldsymbol{s}) \leq \lambda \end{cases} \\ \boldsymbol{d}_{g}(\boldsymbol{r},\boldsymbol{s}) = \boldsymbol{L}_{1}, \boldsymbol{L}_{2}, \boldsymbol{L}_{\infty} \end{cases}$$

• Gaussian like

$$v_{\lambda}(\boldsymbol{r},\boldsymbol{s}) = \exp\left(-\frac{d_g^2(\boldsymbol{r},\boldsymbol{s})}{2\lambda^2}\right)$$
$$d_g(\boldsymbol{r},\boldsymbol{s}) = L_2$$

Shape of lattice

- In most implementations the points in the lattice are equally spaced in the plane which forces the embedding space to be two-dimensional
 - square structure (8 neighbours)
 - hexagonal struture (6 neighbours)
- For higher dimension lattices the hyper-cubic neighbourhoods are mostly used

SOM batch algorithm

- 1. Define the lattice by assigning the low-dimensional coordinates g(r) of the prototypes in the embedding space
- **2.** Initialize the coordinates c(r) of prototypes in the data space
- 3. Give α and ν their scheduled values for epoch q
- 4. For all points y(i) in the data set, find it's closest prototype and update coordinates of all prototypes
- 5. Return the step 3 until convergence is reached (the updates of prototypes become negligible)

Embedding of test points

• Calculation is done exactly as for data points

 $c(s) \leftarrow c(s) + \alpha v_{\lambda}(r,s) (y(i) - c(s))$

- This gives rough estimate of exact coordinates of test points in embedding space, since there is fixed number of outputs
- There exist precise interpolation methods for finding these coordinates

Example

Example (cont.)

SOM summary (1)

- Vector quantization is mandatory
- Models data in nonlinear and discrete way
- Mappings is explicit (prototypes only)

SOM summary (2)

- Advantages
 - Easy to understand
 - Nice visualization method
 - Applicable to various fields
- Drawbacks
 - Low dimensionality of embedding space (usually 1 or 2 dimensions)
 - Vector quantization
 - Shape of lattice predefined (often arbitrary)
 - No objective function or error criterion
 - What are good values for parameters α and ν

SOM variants

- Extend the lattice by adding rows and colums
 - GG (Growing Grid) & GSOM (Growing SOM)
- Change the shape appropriatelly to fit data
 - GCS (Growing Cell Structure)