Topology Preservation - part I
Self-organising maps

Dušan Sovilj

23.10.2007
Outline

• Distance vs Topology
• Topology-preserving methods
• Self-organising map in dimensionality reduction
 – embedding of data set
 – embedding of test set
 – example
 – summary
Distance vs Topology

- **Distance**
 - simple to understand
 - easy to compute
 - rigid in dimensionality reduction

- **Topology**
 - can fully describe manifolds
 - hard to represent with few points
 - without a good description of topology, dimensionality reduction is impossible
Topology-preserving methods

- Very ofted they use the discrete mapping model
 - the topology is then also discrete, called lattice
- Topology can be discretely represented with a graph
- Classified according to type of topology used in embedding space
 - predefined lattice
 - data-driven lattice
'Predefined lattice' methods

- Methods
 - self-organising map
 - generative topographic mapping
- Application very limited (few manifolds fit predefined shape)
- Good way for visualization of labeled data
SOM in DR

- Can be interpreted as non-linear & discrete PCA
 - fitting of hyperplane inside the data cloud
 - hyperplane is described with discrete points
 - fitting of a 'fishing net' around an object
- SOM uses a mix of vector quantization and topology preservation
Classic VQ & SOM's VQ

- Vector quantization in SOMs are mandatory
- Classic VQ doesn't take into account the relations between the prototypes/representatives
- SOM tries to 'preserve' the lattice in data space by moving prototypes in neighbouring groups
SOM definition

- Set \mathcal{C} containing the prototypes in the data space for vector quantization. Prototypes are D-dimensional points $\mathbf{c}(r)$
- Distance function $d_g(r, s)$ between the prototypes in the lattice
- r & s are indices of prototypes
Embedding of data points in SOM

- Lattice plays the role of embedding space
 - $d_g(r, s)$ cannot be any distance function
 - $d_g(r, s)$ is often defined as $d_g(g(r), g(s))$, $g(r), g(s) \in G \subset \mathbb{R}^P$
 P is dimensionality of embedding space
- Prototypes have coordinates both in data and embedding space
 - coordinates in embedding space are known (predefined lattice)
 - coordinates in data space are unknown, and SOM has to find them
- Embedding of data points $y(i)$
 $x(i) = g(r)$
 $r = \arg \min_s d(y(i), c(s))$
 where d is Euclidean distance
Prototypes' coordinates

- Iteratively by going through all data points in \mathbf{Y} (epochs)
- For every point $y(i)$
 1. Find closest prototype

 $$ r = \underset{s}{\arg \min} d(y(i), c(s)) $$

 2. Update coordinates of all prototypes

 $$ c(s) \leftarrow c(s) + \alpha \nu_{\lambda}(r, s) (y(i) - c(s)) $$

 α learning rate, $0 \leq \alpha \leq 1$ decreases with epochs
 ν_{λ} neighbourhood function
Neighbourhood functions

- 'Bubble'

\[\nu_\lambda(r, s) = \begin{cases}
0 & \text{if } d_g(r, s) > \lambda \\
1 & \text{if } d_g(r, s) \leq \lambda
\end{cases} \]

\[d_g(r, s) = L_1, L_2, L_\infty \]

- Gaussian like

\[\nu_\lambda(r, s) = \exp\left(-\frac{d_g^2(r, s)}{2\lambda^2}\right) \]

\[d_g(r, s) = L_2 \]
Shape of lattice

- In most implementations the points in the lattice are equally spaced in the plane which forces the embedding space to be two-dimensional
 - square structure (8 neighbours)
 - hexagonal struture (6 neighbours)
- For higher dimension lattices the hyper-cubic neighbourhhoods are mostly used
SOM batch algorithm

1. Define the lattice by assigning the low-dimensional coordinates $g(r)$ of the prototypes in the embedding space

2. Initialize the coordinates $c(r)$ of prototypes in the data space

3. Give α and ν their scheduled values for epoch q

4. For all points $y(i)$ in the data set, find it's closest prototype and update coordinates of all prototypes

5. Return the step 3 until convergence is reached (the updates of prototypes become negligible)
Embedding of test points

- Calculation is done exactly as for data points
 \[c(s) \leftarrow c(s) + \alpha \nu_\lambda(r, s) (y(i) - c(s)) \]
- This gives rough estimate of exact coordinates of test points in embedding space, since there is fixed number of outputs
- There exist precise interpolation methods for finding these coordinates
Example
Example (cont.)
SOM summary (1)

- Vector quantization is mandatory
- Models data in nonlinear and discrete way
- Mappings is explicit (prototypes only)
SOM summary (2)

- **Advantages**
 - Easy to understand
 - Nice visualization method
 - Applicable to various fields

- **Drawbacks**
 - Low dimensionality of embedding space (usually 1 or 2 dimensions)
 - Vector quantization
 - Shape of lattice predefined (often arbitrary)
 - No objective function or error criterion
 - What are good values for parameters α and ν
SOM variants

- Extend the lattice by adding rows and columns
 - GG (Growing Grid) & GSOM (Growing SOM)
- Change the shape appropriately to fit data
 - GCS (Growing Cell Structure)