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Introduction

Basic concepts are presented.

The PCA method is analyzed.

Motivation for more sophisticated methods is given.
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Basic Requirements

Estimation of the embedding dimension.

Dimensionality reduction

Separation of latent variables.
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Instrinsic Dimensionality

Let us assume that the data is in ℜD .

The basic assumption: the data can be embedded into ℜP

with P < D.
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Example: A Low Dimensional Manifold
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Latent Variables vs. Dimensionality Reduction

When extracting latent variables, a model generating the data
is assumed (eg. ICA).

The embedding into a lower dimensional space is done under
this constraint.

Dimensionality reduction is easier: any low dimensional
representation is a solution.

DR is less interpretable?
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Example: Dimensionality Reduction
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Example: Recovery of Latent Variables

Dimensionality reduction under an independence constraint.

9 / 26



Fundamental Issues

Many dimensionality reduction algorithms assume that the
data is generated by a model.

For example, in PCA it is assumed that a number of latent
variables explain the data in a linear way.

For the same model, different algorithms are possible.
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The Criterion

The dimensionality reduction is often done using a criterion
that is optimized.

One possible idea is to measure distance preservation.

One may either try to preserve the distances between points
or alternatively the topology.
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Projection as a criterion

Let P : ℜD → ℜP be a projection.

P−1 denotes the reconstruction ℜP → ℜD .

A common criterion in dimensionality reduction is

E [‖y − P−1P(x)‖2].
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Derivation of PCA (1)

The basic model behind PCA is

y = Wx

with y a random variable in ℜD and W a D × P matrix.

The sample (Xi ,Yi )
N
i=1 is available; mean centering is

assumed.

Normalization/scaling is done according to prior knowledge.
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Derivation of PCA (2)

Assume that W has orthonormal columns.

The projection criterion leads to

min
W

E [‖y − WW Ty‖2].

This corresponds to finding the subspace which allows best
possible reconstruction.
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Derivation of PCA (3)

The optimization problem can be written equivalently as

max
W

E [yTWW T y ].

Let Y be the matrix of samples as column vectors.

Empirical approximation leads to

max
W

tr[Y TWW TY ].
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Derivation of PCA (4)

Singular value decomposition Y = V ΣUT yields

max
W

tr[UΣV TWW TV ΣUT ].

The solution is taking the columns of V corresponding to the
largest singular values, which can be written as W = VID×P .

The reconstruction error depends on the singular values
σP+1, . . . , σD .
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Relation to the Covariance Matrix

Let Cy be the covariance matrix of the observations.

Finding the projection V is equivalent to finding the
eigenvectors V1, . . . ,VP corresponding to the biggest
eigenvalues.

The eigenvectors are the directions of maximal variance.
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Choosing the embedding dimensionality

A simple method is to plot sorted eigenvalues.

After some point, the decrease is neglible.

This often fails; other choices include Akaike’s information
criterion and other complexity penalization methods.

It is also possible to put a threshold: for example, require that
95% of the variance is preserved.
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Example: Determination of Instrinsic

Dimensionality

Choose X ∼ N(0, I ) ∈ ℜ2,

A = [0.1 0.2; 0.4 0.2; 0.3 0.3; 0.5 0.1; 0.1 0.4]

and
Y = AX + ǫ

with ǫ ∼ N(0, 0.1I ).
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Example: Determination of Instrinsic

Dimensionality (2)
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Figure: Eigenvalues of the covariance matrix.

The first two contain most of the variance.
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PCA for nonlinear data (1)

The model: y =





4 cos(1
4
x1)

4 sin(1
4
x1)

x1 + x2



 .
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PCA for nonlinear data (2)

The reconstructed surface would be a plane.
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DR vs. generative (latent variable) models

It is possible to model the data using latent variables and
estimate the parameters.

In practice, it is simpler to directly learn a projection.
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Local Dimensionality Reduction

A nonlinear manifold is locally approximately linear.

It is possible to derive a local PCA as a generalization to the
nonlinear case.
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Other Issues

Batch vs. online algorithm

Local maximas < − > global optimization (PCA)
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Conclusion

Many dimensionality reduction methods are based on the
assumption that the data is approximately on a manifold.

PCA solves the linear case, but fails in nonlinear problems.

Thank you for your attention.
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